Project description:Mass spectrometry based metabolomics is a widely used approach in biomedical research. However, current methods coupling mass spectrometry with chromatography are time-consuming and not suitable for high-throughput analysis of thousands of samples. An alternative approach is flow-injection mass spectrometry (FI-MS) in which samples are directly injected to the ionization source. Here, we show that the sensitivity of Orbitrap FI-MS metabolomics methods is limited by ion competition effect. We describe an approach for overcoming this effect by analyzing the distribution of ion m/z values and computationally determining a series of optimal scan ranges. This enables reproducible detection of ~9,000 and ~10,000 m/z features in metabolomics and lipidomics analysis of serum samples, respectively, with a sample scan time of ~15 s and duty time of ~30 s; a ~50% increase versus current spectral-stitching FI-MS. This approach facilitates high-throughput metabolomics for a variety of applications, including biomarker discovery and functional genomics screens.
Project description:Glycoproteomic analysis requires efficient separation and sensitive detection to enable the comprehensive characterization of glycan heterogeneity. Here, we report the use of capillary zone electrophoresis-electrospray ionization-mass spectrometry (CZE-ESI-MS) with an electrokinetically-pumped nanospray interface for the study of protein glycosylation microheterogeneity. A fast separation was developed that resolved intact glycopeptides generated from standard proteins within ~9min. Differentially terminal-galactosylated and sialylated species with the same glycosylation sites were well resolved. The concentration detection limits for CZE were three times higher than for nanoLC methods; however, a 200-fold smaller injection volume was used in CZE, which reflects the use of an extremely efficient electrospray interface in our CZE-ESI-MS setup. The resulting glycopeptide mass detection limit was two orders of magnitude superior to a nanoLC method. We also observed a 1.5% and 7% average relative standard deviation in peak migration time and glycopeptide relative abundance, and a four order of magnitude linear dynamic range in signal intensity. With CZE-ESI-MS, 40 haptoglobin glycopeptides were identified from roughly 40 fmol of digest.
Project description:In the present paper, we showed the advantages of trapped ion mobility spectrometry coupled too mass spectrometry (TIMS-MS) combined with theoretical calculations for fast identification (millisecond timescale) of polycyclic aromatic hydrocarbons (PAH) compounds from complex mixtures. Accurate PAH collision cross sections (CCS, in nitrogen as a bath gas) are reported for the most commonly encountered PAH compounds and the ability to separate PAH geometric isomers is shown for three isobaric pairs with mobility resolution exceeding 150 (3-5 times higher than conventional IMS devices). Theoretical candidate structures (optimized at the DFT/B3LYP level) are proposed for the most commonly encountered PAH compounds showing good agreement with the experimental CCS values (<5%). The potential of TIMS-MS for the separation and identification of PAH compounds from complex mixtures without the need of lengthy pre-separation steps is illustrated for the case of a complex soil mixture.
Project description:Tandem mass spectrometry-based proteotyping allows characterizing microorganisms in terms of taxonomy and is becoming an important tool for investigating microbial diversity from several ecosystems. Fast and automatable sample preparation for obtaining peptide pools amenable to tandem mass spectrometry is necessary for enabling proteotyping as a high-throughput method. First, the protocol to increase the yield of lysis of several representative bacterial and eukaryotic microorganisms was optimized by using a long and drastic bead-beating setting with 0.1 mm silica beads, 0.1 and 0.5 mm glass beads, in presence of detergents. Then, three different methods to obtain greater digestion yield from these extracts were tested and optimized for improve efficiency and reduce application time: denaturing electrophoresis of proteins and in-gel proteolysis, suspension-trapping filter-based approach (S-Trap) and, solid-phase-enhanced sample preparation named SP3. The latter method outperforms the other two in terms of speed and delivers also more peptides and proteins than with the in-gel proteolysis (2.2 fold for both) and S-trap approaches (1.3 and 1.2 fold, respectively). Thus, SP3 directly improves tandem mass spectrometry proteotyping.
Project description:Conventional mass spectrometry (MS)-based analytical methods for small carbohydrate fragments (oligosaccharides, degree of polymerization 2-12) are time-consuming due to the need for an offline sample pretreatment such as desalting. Herein, we report a new paper spray ionization method, named desalting paper spray (DPS), which employs a piece of triangular filter paper for both sample desalting and ionization. Unlike regular paper spray ionization (PSI) and nanoelectrospray ionization (nanoESI), DPS-MS allows fast and sensitive detection of oligosaccharides in biological samples having complex matrices (e.g., Tris, PBS, HEPES buffers, or urine). When an oligosaccharide sample is loaded onto the filter paper substrate (10 × 5 mm, height × base) made mostly of cellulose, oligosaccharides are adsorbed on the paper via hydrophilic interactions with cellulose. Salts and buffers can be washed away using an ACN/H2O (90/10 v/v) solution, while oligosaccharides can be eluted from the paper using a solution of ACN/H2O/formic acid (FA) (10/90/1 v/v/v) and directly spray-ionized from the tip of the paper. Various saccharides at trace levels (e.g., 50 fmol) in nonvolatile buffer can be quickly analyzed by DPS-MS (<5 min per sample). DPS-MS is also applicable for direct detection of oligosaccharides from glycosyltransferase (GT) reactions, a challenging task that typically requires a radioactive assay. Quantitative analysis of acceptor and product oligosaccharides shows increased product with increased GT enzymes used for the reaction, a result in line with the radioactivity assay. This work suggests that DPS-MS has potential for rapid oligosaccharide analysis from biological samples.
Project description:Despite often minute concentrations in vivo, d-amino acid containing peptides (DAACPs) are crucial to many life processes. Standard proteomics protocols fail to detect them as d/l substitutions do not affect the peptide parent and fragment masses. The differences in fragment yields are often limited, obstructing the investigations of important but low abundance epimers in isomeric mixtures. Separation of d/l-peptides using ion mobility spectrometry (IMS) was impeded by small collision cross section differences (commonly ∼1%). Here, broad baseline separation of DAACPs with up to ∼30 residues employing trapped IMS with resolving power up to ∼340, followed by time-of-flight mass spectrometry is demonstrated. The d/l-pairs coeluting in one charge state were resolved in another, and epimers merged as protonated species were resolved upon metalation, effectively turning the charge state and cationization mode into extra separation dimensions. Linear quantification down to 0.25% proved the utility of high resolution IMS-MS for real samples with large interisomeric dynamic range. Very close relative mobilities found for DAACP pairs using traveling-wave IMS (TWIMS) with different ion sources and faster IMS separations showed the transferability of results across IMS platforms. Fragmentation of epimers can enhance their identification and further improve detection and quantification limits, and we demonstrate the advantages of online mobility separated collision-induced dissociation (CID) followed by high resolution mass spectrometry (TIMS-CID-MS) for epimer analysis.
Project description:Flash proteotyping is a methodology for ultra-fast identification of microorganisns by tandem mass spectrometry. Here, we obtained results on five reference strains and ten new bacterial isolates. The methodology is based on direct sample infusion into the mass spectromete and an original, highly sensitive procedure for data processing and taxonomic identification.
Project description:To better understand disease conditions and environmental perturbations, multiomic studies combining proteomic, lipidomic, and metabolomic analyses are vastly increasing in popularity. In a multiomic study, a single sample is typically extracted in multiple ways, and various analyses are performed using different instruments, most often based upon mass spectrometry (MS). Thus, one sample becomes many measurements, making high throughput and reproducible evaluations a necessity. One way to address the numerous samples and varying instrumental conditions is to utilize a flow injection analysis (FIA) system for rapid sample injections. While some FIA systems have been created to address these challenges, many have limitations such as costly consumables, low pressure capabilities, limited pressure monitoring, and fixed flow rates. To address these limitations, we created an automated, customizable FIA system capable of operating at a range of flow rates (∼50 nL/min to 500 μL/min) to accommodate both low- and high-flow MS ionization sources. This system also functions at varying analytical throughputs from 24 to 1200 samples per day to enable different MS analysis approaches. Applications ranging from native protein analyses to molecular library construction were performed using the FIA system, and results showed a highly robust and reproducible platform capable of providing consistent performance over many days without carryover, as long as washing buffers specific to each molecular analysis were utilized.
Project description:Preventing and treating Alzheimer's disease require understanding the aggregation of amyloid beta 1-42 (Aβ1-42) to give oligomers, protofibrils, and fibrils. Here we describe footprinting of Aβ1-42 by hydroxyl radical-based fast photochemical oxidation of proteins (FPOP) and mass spectrometry (MS) to monitor the time-course of Aβ1-42 aggregation. We resolved five distinct stages characterized by two sigmoidal behaviors, showing the time-dependent transitions of monomers-paranuclei-protofibrils-fibrillar aggregates. Kinetic modeling allows deciphering the amounts and interconversion of the dominant Aβ1-42 species. Moreover, the irreversible footprinting probe provides insights into the kinetics of oligomerization and subsequent fibrillar growth by allowing the conformational changes of Aβ1-42 at subregional and even amino-acid-residue levels to be revealed. The middle domain of Aβ1-42 plays a major role in aggregation, whereas the N-terminus retains most of its solvent-accessibility during aggregation, and the hydrophobic C-terminus is involved to an intermediate extent. This approach affords an in situ, real-time monitoring of the solvent accessibility of Aβ1-42 at various stages of oligomerization, and provides new insights on site-specific aggregation of Aβ1-42 for a sample state beyond the capabilities of most other biophysical methods.
Project description:Top-down proteomics provides a straightforward approach to the level of proteoforms but remains technologically challenging. Using ion mobility spectrometry/mass spectrometry (IMS/MS) to separate top-down fragment ions improves signal/noise and dynamic range. Such applications, however, do not yet leverage the primary information obtained from IMS/MS, which is the characterization of the fragment ion structure by the measured momentum transfer cross sections. Here, we perform top-down analysis of intact proteins and assemblies using our tandem trapped ion mobility spectrometer/mass spectrometer (tTIMS/MS) and compile over 1400 cross section values of fragment ions. Our analysis reveals that most fragment ions exhibit multiple, stable conformations similar to those of intact polypeptides and proteins. The data further indicate that the conformational heterogeneity is strongly influenced by the amino acid sequences of the fragment ions. Moreover, time-resolved tTIMS/MS experiments reveal that conformations of top-down fragment ions can be metastable on the timescale of ion mobility measurements. Taken together, our analysis indicates that top-down fragment ions undergo a folding process in the gas phase and that this folding process can lead to kinetic trapping of intermediate states in ion mobility measurements. Hence, because the folding free energy surface of a polypeptide ion is encoded by its amino acid sequence and charge state, our analysis suggests that cross sections can be exploited as sequence-specific determinants of top-down fragment ions.