Metabolomics Analysis: Opioid Addiction Project (Golestan Cohort Study) - NMR (part-II)
Ontology highlight
ABSTRACT: Drug addiction is a major threat to the public health in the US and many other countries. Opioid abuse is associated with increased risks for cancer, psychological complications, heart and lung disease, and infections of the liver and blood. Because metabolites are intrinsically involved in multiple metabolic pathways in vivo, the relative quantification of metabolites in body fluids (for example urine) can provide a profile of the metabolic state of an organism. Metabolomics is a powerful technique for revealing the impact of exposure on the overall biochemistry of an individual or system. Opioids can modify the output of urinary metabolites through many integrated neural and hormonal mechanisms within the periphery, central nervous system, and kidneys. Opioids modulate the expression of genes involved in neuroplasticity through epigenetic and possibly RNA modifications, ultimately change the intracellular signaling cascades and dysfunction, and cause long-lasting changes in metabolome. The objective of this study is to identify how opium impacts metabolic pathways to provide markers of abuse, long-term opium addiction, the addiction molecular pathway, and unknown metabolites that are important to differentiation of the study phenotypes. To reach these goals in the present study, the urine specimens of opium abusers and non-users as controls was profiled using an untargeted nuclear magnetic resonance spectroscopy (NMR) metabolomics platform at University of North Carolina at Chapel Hill. The Golestan Cohort Study is conducted in Northeast of Iran to primarily study the risk factors for upper gastrointestinal cancers in this high-risk region, in which about 50,000 volunteers were analyzed for opium users and their mortality. More than 8,000 of participants (17%) age 40-75 reported opium use with a mean duration of 12.7 years. Opium was either smoked or orally consumed. The participants were selected from the cohort stratified by opium use patterns and tobacco use.
ORGANISM(S): Human Homo Sapiens
TISSUE(S): Urine
DISEASE(S): Addiction
SUBMITTER: Susan Sumner
PROVIDER: ST001619 | MetabolomicsWorkbench | Tue Dec 01 00:00:00 GMT 2020
REPOSITORIES: MetabolomicsWorkbench
ACCESS DATA