Project description:Pentosidine (PEN) is an Advanced Glycation End-product (AGE) that is known to accumulate in bone collagen with aging and contribute to fracture risk. The PEN content in bone is correlated with serum PEN, making it an attractive, potential osteoporosis biomarker. We sought to develop a method for quantifying PEN in stored serum. After conducting a systematic narrative review of PEN quantification methodologies, we developed a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for quantifying total serum PEN. Our method is both sensitive and precise (LOD 2 nM, LOQ 5 nM, %CV < 6.5 % and recovery 91.2-100.7 %). Our method is also equivalent or better than other methods identified in our review. Additionally, LC-MS/MS avoids the pitfalls and limitations of using fluorescence as a means of detection and could be adapted to investigate a broad range of AGE compounds.
Project description:Human biomonitoring of oxidative stress relies on urinary effect biomarkers such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), and 8-iso-prostaglandin F2α (8-isoprostane); however, their levels reported for similar populations are inconsistent in the scientific literature. One of the reasons is the multitude of analytical methods with varying degrees of selectivity used to quantify these biomarkers. Single-analyte methods are often used, requiring multiple injections that increase both time and cost. We developed a rapid ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to quantify both urinary biomarkers simultaneously. A reversed-phase column using a gradient consisting of 0.1% acetic acid in water and 0.1% acetic acid in methanol/acetonitrile (70:30) was used for separation. The MS detection was by positive (8-oxodG) and negative (8-isoprostane) ion-mode by multiple reaction monitoring. Very low limit of detection (<20 pg/mL), excellent linearity (R2 > 0.999), accuracy (near 100%), and precision (CV < 10%) both for intra-day and inter-day experiments were achieved, as well as high recovery rates (>91%). Matrix effects were observed but were compensated by using internal standards. Our newly developed method is applicable for biomonitoring studies as well as large epidemiological studies investigating the effect of oxidative damage, as it requires only minimal clean up using solid phase extraction.
Project description:Nitrated lipids have been detected in vitro and in vivo, usually associated with a protective effect. While nitrated fatty acids have been widely studied, few studies reported the nitration and nitroxidation of the phospholipid classes phosphatidylcholine, and phosphatidylethanolamine. However, no information regarding nitrated and nitroxidized phosphatidylserine can be found in the literature. This work aims to identify and characterize the nitrated and nitroxidized derivatives of 1-palmitoyl-2-oleoyl-sn-3-glycero-phosphoserine (POPS), obtained after incubation with nitronium tetrafluoroborate, by liquid chromatography (LC) coupled to mass spectrometry (MS) and tandem MS (MS/MS). Several nitrated and nitroxidized products were identified, namely, nitro, nitroso, nitronitroso, and dinitro derivatives, as well as some nitroxidized species such as nitrosohydroxy, nitrohydroxy, and nitrohydroperoxy. The fragmentation pathways identified were structure-dependent and included the loss of HNO and HNO₂ for nitroso and nitro derivatives, respectively. Combined losses of PS polar head group plus HNO or HNO₂ and carboxylate anions of modified fatty acyl chain were also observed. The nitrated POPS also showed antiradical potential, demonstrated by the ability to scavenge the ABTS●+ and DPPH● radicals. Overall, this in vitro model of nitration based on LC-MS/MS provided additional insights into the nitrated and nitroxidized derivatives of PS and their fragmentation fingerprinting. This information is a valuable tool for targeted analysis of these modified PS in complex biological samples, to further explore the new clues on the antioxidant potential of nitrated POPS.
Project description:UnlabelledAs a common post-translational modification, protein glycosylation plays an important role in many biological processes, and it is known to be associated with human diseases. Mass spectrometry (MS)-based glycomic profiling techniques have been developed to measure the abundances of glycans in complex biological samples and applied to the discovery of putative glycan biomarkers. To automate the annotation of glycomic profiles in the liquid chromatography-MS (LC-MS) data, we present here a user-friendly software tool, MultiGlycan, implemented in C# on Windows systems. We tested MultiGlycan by using several glycomic profiling datasets acquired using LC-MS under different preparations and show that MultiGlycan executes fast and generates robust and reliable results.AvailabilityMultiGlycan can be freely downloaded at http://darwin.informatics.indiana.edu/MultiGlycan/.Supplementary informationSupplementary data are available at Bioinformatics online.
Project description:The process of aging and metabolism are intricately linked, thus rendering the identification of reliable biomarkers related to metabolism crucial for delaying the aging process. However, research of reliable markers that reflect aging profiles based on machine learning is scarce. Serum samples were obtained from aged mice (18-month-old) and young mice (3-month-old). LC-MS was used to perform a comprehensive analysis of the serum metabolome and machine learning was used to screen potential aging-related biomarkers. In total, aging mice were characterized by 54 different metabolites when compared to control mice with criteria: VIP ≥ 1, q-value < 0.05, and Fold-Change ≥ 1.2 or ≤0.83. These metabolites were mostly involved in fatty acid biosynthesis, cysteine and methionine metabolism, D-glutamine and D-glutamate metabolism, and the citrate cycle (TCA cycle). We merged the comprehensive analysis and four algorithms (LR, GNB, SVM, and RF) to screen aging-related biomarkers, leading to the recognition of oleic acid. In addition, five metabolites were identified as novel aging-related indicators, including oleic acid, citric acid, D-glutamine, trypophol, and L-methionine. Changes in the metabolism of fatty acids and conjugates, organic acids, and amino acids were identified as metabolic dysregulation related to aging. This study revealed the metabolic profile of aging and provided insights into novel potential therapeutic targets for delaying the effects of aging.
Project description:Here we describe the use of reverse-phase liquid chromatography mass spectrometry (RPLC-MS) to simultaneously characterize variants and post-translationally modified isoforms for each histone. The analysis of intact proteins significantly reduces the time of sample preparation and simplifies data interpretation. LC-MS analysis and peptide mass mapping have previously been applied to identify histone proteins and to characterize their post-translational modifications. However, these studies provided limited characterization of both linker histones and core histones. The current LC-MS analysis allows for the simultaneous observation of all histone PTMs and variants (both replacement and bulk histones) without further enrichment, which will be valuable in comparative studies. Protein identities were verified by the analysis of histone H2A species using RPLC fractionation, AU-PAGE separation and nano-LC-MS/MS.
Project description:Flame retardants are added to consumer products to retard the ignition of combustible materials. Technical mixtures of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD) were massively used for several decades. They are bioaccumulative, persistent, and have adverse effects on organisms. Recognised as persistent organic pollutants, they are banned almost worldwide. Food is the principal source of human exposure. Yet, no maximum residue limits for food have been established in the EU. Nevertheless, monitoring of specific congeners is recommended. Simultaneous analysis of HBCDDs and PBDEs is rarely encountered, especially including BDE-209, as this thermally unstable congener is particularly challenging for analysis. We have developed a method for the simultaneous determination of all relevant PBDEs and HBCDDs recommended for monitoring by the EU. In the method, single sample preparation is used for different types of foodstuffs, applying ultrasound-assisted extraction, clean-up by gel permeation, and adsorption chromatography. Analyses were performed on the same extract, first by GC-MS/MS(EI) method for PBDEs and followed by LC-MS/MS(ESI) method for HBCDDs. The analytical method was validated on a blank sample of milk formula at 2-3 fortification levels, including recommended LOQ level of 0.01 µg/kg wet weight. Satisfactory accuracy with recoveries 85-119%, intra-day precision (1.5-11.3%), and inter-day precision (4.3-18.4%) was obtained. The method ensures LOQs that are compliant with the EU recommendations for all PBDEs and HBCDDs, including BDE-209. Method applicability was further confirmed on proficiency testing samples of baby food, fish, and citrus.
Project description:Ceftriaxone is a cephalosporin antibiotic drug used as first-line treatment for a number of bacterial diseases. Ceftriaxone belongs to the third generation of cephalosporin and is available as an intramuscular or intravenous injection. Previously published pharmacokinetic studies have used high-performance liquid chromatography coupled with ultraviolet detection (HPLC-UV) for the quantification of ceftriaxone. This study aimed to develop and validate a bioanalytical method for the quantification of ceftriaxone in human plasma using liquid chromatography followed by tandem mass spectrometry (LC-MS/MS). Sample preparation was performed by protein precipitation of 100 µl plasma sample in combination with phospholipid-removal techniques to minimize matrix interferences. The chromatographic separation was performed on an Agilent Zorbax Eclipse Plus C18 column with 10 mM ammonium formate containing 2% formic acid: acetonitrile as mobile phase at a flow rate of 0.4 ml/min with a total run time of 10 minutes. Both the analyte and cefotaxime (internal standard) were detected using the positive electrospray ionization (ESI) mode and selected reaction monitoring (SRM) for the precursor-product ion transitions m/z 555.0→396.1 for ceftriaxone and 456.0→324.0 for cefotaxime. The method was validated over the concentration range of 1.01-200 μg/ml. Calibration response showed good linearity (correlation coefficient > 0.99) and matrix effects were within the ±15% limit in 6 different lots of sodium heparin plasma tested. However, citrate phosphate dextrose plasma resulted in a clear matrix enhancement of 24% at the low concentration level, which was not compensated for by the internal standard. Different anticoagulants (EDTA, heparin and citrate phosphate dextrose) also showed differences in recovery. Thus, it is important to use the same anticoagulant in calibration curves and clinical samples for analysis. The intra-assay and inter-assay precision were less than 5% and 10%, respectively, and therefore well within standard regulatory acceptance criterion of ±15%.
Project description:Multiple chronic conditions (MCCs) such as diabetes, hypertension, heart disease, arthritis, asthma, and common respiratory problems are prevalent in over one-fourth of Americans, and separate drugs are prescribed to manage each of the diseases. The nutritive crop seeds loaded with multiple drugs could be a cheap and sustainable alternative to drugs produced by pharmaceutical companies. Our long-term goal is to produce chickpea seeds containing comparable dosages of multiple drugs regularly prescribed for managing MCC. In this work, we conducted experiments to understand the uptake and translocation of metformin into the tissues of chickpea to demonstrate the applicability of LC-HR-ToF-MS in determining metformin concentration, and to investigate responses of increased dosage of metformin and it's accumulation into the chickpea seed. We treated the chickpea plants with 100 and 500 mg/L metformin chloride and analyzed its concentration in the leaf, stem, and seeds. We observed that metformin was successfully uptaken by chickpeas plant and translocated to stem, leaf, and seeds in both treatments. We also observed that the metformin concentration is responsive and as high as 349 times increase in seed when the dosage was increased from 100 to 500 mg/L.
Project description:A model that predicts retention for peptides using a HALO® penta-HILIC column and gradient elution was created. Coefficients for each amino acid were derived using linear regression analysis and these coefficients can be summed to predict the retention of peptides. This model has a high correlation between experimental and predicted retention times (0.946), which is on par with previous RP and HILIC models. External validation of the model was performed using a set of H. pylori samples on the same LC-MS system used to create the model, and the deviation from actual to predicted times was low. Apart from amino acid composition, length and location of amino acid residues on a peptide were examined and two site-specific corrections for hydrophobic residues at the N-terminus as well as hydrophobic residues one spot over from the N-terminus were created.