Project description:Role of fungal cellulases upon Fusarium oxysporum infection. We obtained Fusarium oxysporum mutants, which cannot degrade cellulose capacity to observe their virulence. Cellulose degradation is not mandatory for Fusarium oxysporum to reach the plant vasculature system.
Project description:MicroRNAs (miRNAs) are a class of endogenous non-coding small RNAs that regulate targeted mRNAs by degrading or repressing translation, considered as post-transcrption regulators. So far, a large number of miRNAs have been discovered in model plants, but little information is available on miRNAs in banana. In this study, by sequencing the small RNA (sRNA) transcriptomes of Fusarium wilt resistant and susceptible banana varieties, 139 members in 38 miRNA families were discovered, and six out of eight new miRNAs were confirmed by RT-PCR. According to the analysis of sRNA transcriptome data and qRT-PCR verification, some miRNAs were differentially expressed between Fusarium wilt resistant and susceptible banana varieties. Two hundred and ninety-nine and 31 target genes were predicted based on the draft maps of banana B genome and Fusarium oxysporum (FOC1, FOC4) genomes respectively. Specifically, two important pathogenic genes in Fusarium oxysporum genomes, feruloyl esterase gene and proline iminopeptidase gene, were targeted by banana miRNAs. These novel findings may provide a new strategy for the prevention and control of Fusarium wilt in banana.
Project description:Fusarium spp. are fungal pathogens of humans and plants. Fusarium oxysporum and Fusarium solani are important species isolated from infections such as onychomycosis, fungal keratitis, invasive infections, and disseminated diseases. These pathologies have a very difficult therapeutic management and poor therapeutic responses, especially in patients with disseminated infection. Little information is available regarding the molecular mechanisms responsible for antifungal resistance in these fungi. methods: In this study, we performed a quantitative analysis of the transcriptional profile of F. oxysporum and F. solani, challenged with amphotericin B (AMB) and posaconazole (PSC) using RNA-seq. Quantitative real-time reverse transcription PCR (qRT-PCR) was used to validate the results results: Several genes related to mechanisms of antifungal resistance such as efflux pumps, ergosterol pathway synthesis, and responses to oxidative stress were found. Genes such as ERG11, ERG5, the Major Facilitator Superfamily (MFS), thioredoxin, and different dehydrogenase genes may explain the reduced susceptibility of Fusarium spp. against azoles and the possible mechanisms that may play an important role in induced resistance against polyenes. conclusions: Important differences in the levels of transcriptional expression were found between F. oxysporum and F. solani exposed to the two different antifungal treatments. Knowledge on the gene expression profiles and gene regulatory networks in Fusarium spp. during exposure to antifungal compounds, may help to identify possible molecular targets for the development of novel, better, and more specific therapeutic compounds. profile transcriptional of Fusarium spp changed to antifungal treatments in vitro
Project description:Soilborne fungal pathogens cause devastating yield losses, are highly persistent and difficult to control. To culminate infection, these organisms must cope with limited availability of iron. Here we show that the bZIP protein HapX functions as a key regulator of iron homeostasis and virulence in the vascular wilt fungus Fusarium oxysporum. Deletion of hapX does not affect iron uptake, but causes derepression of genes involved in iron-consuming pathways, leading to impaired growth under iron-depleted conditions. F. oxysporum strains lacking HapX are reduced in their capacity to invade and kill tomato plants and immunodepressed mice. The virulence defect of M-NM-^ThapX on tomato plants is exacerbated by coinoculation of roots with a biocontrol strain of Pseudomonas putida, but not with a siderophore-deficient mutant, indicating that HapX contributes to iron competition of F. oxysporum in the tomato rhizosphere. These results establish a conserved role for HapX-mediated iron homeostasis in fungal infection of plants and mammals. Iron dependent gene expression in Fusarium oxysporum wt and M-NM-^ThapX mutant was measured 1 hour after shifting the mycelia to minimal medium with or without 50 M-NM-<M Fe2(SO4)3. Three independent experiments were performed.
Project description:Fusarium oxysporum causes Fusarium wilt syndrome in more than 120 different plant hosts, including globally important crops such as tomato, cotton, banana, melon, etc. F. oxysporum shows high host specificity in over 150 formae speciales and have been ranked in the top 10 plant fungal pathogens. Although three PMTs encoded by the pmt1, pmt2, and pmt4 are annotated in the genome of F. oxysporum, their functions have not been reported. As O-mannosylation is not found in plants, a comprehensive understanding of PMTs in F. oxysporum becomes attractive for the development of new strategy against Fusarium wilt. In order to understand the molecular mechanism of the differential functions of three PMTs, a comparative O-glycoproteome analysis of the pmt mutants were carried out.
Project description:Lysine acetylation (Kac), a discovered post-translational modification, plays a key role in the regulation of diverse cellular processes. Fusarium oxysporumis a destructive necrotrophic fungal pathogen distributed worldwide with broad ranging hosts. However, the functions of Kac are unknown in Fusarium oxysporumr any other plant fungal pathogens. Here, we comprehensively evaluated the acetylation proteome ofFusarium oxysporum .
Project description:Fungal effectors play important roles in inciting disease development on host plants. We identified an effector (Secreted in Xylem4, SIX4) in an Arabidopsis infecting isolate (Fo5176) of the root-infecting fungal pathogen Fusarium oxysporum and demonstrated this effector is required for full virulence. To explore the role of Fo5176_SIX4 we use whole transcriptome profiling of root tissues from plants overexpressing this effector (35sSIX4) versus wild-type (Col-0) plants after F. oxysporum infection. Published in DOI:10.1007/978-3-319-42319-7_4. Belowground Defence Strategies in Plants.
Project description:Fungal effectors play important roles in inciting disease development on host plants. We identified an effector (Secreted in Xylem4, SIX4) in an Arabidopsis infecting isolate (Fo5176) of the root-infecting fungal pathogen Fusarium oxysporum and demonstrated this effector is required for full virulence. To explore the role of Fo5176_SIX4 we use whole transcriptome profiling of root tissues from plants overexpressing this effector (35sSIX4) versus wild-type (Col-0) plants after F. oxysporum infection. We grew both WT and 35sSIX4 plants for four weeks in soil. After four weeks the plants were infected with Fusarium oxyporum isolate Fo5176, trays covered with a plastic dome and incubated at 28C. There were four independent replicates of each treatment and each replicate contained root tissue from 20 plants. Each replicate (8 in total) was harvested 4 days post inoculation and the resulting RNA was used for hybridization to an Affymetrix ATH1 chip.
Project description:Jasmonate (JA) signaling plays a key role in mediating both resistance and susceptibility to the root-infecting fungal pathogen Fusarium oxysporum. Within this system, the roles of the JA-signaling repressor gene family of JASMONATE ZIM-domain (JAZ) genes had not been investigated. By screening JAZ T DNA insertion lines for altered resistance or susceptibility to F. oxysporum, we identified a JAZ7 mutant (jaz7-1D) highly susceptible to F. oxysporum infection. Further analyses revealed jaz7-1D exhibits constitutively active JAZ7 expression, enhanced expression of JA-defense marker genes, and increased sensitivity to JA-inhibition of root elongation. To further explore altered JA-signaling and JA-responses in this mutant, we use whole transcriptome profiling of jaz7-1D versus wild-type (Col-0) plants after mock/control and JA treatment.
Project description:Fusarium spp. are fungal pathogens of humans and plants. Fusarium oxysporum and Fusarium solani are important species isolated from infections such as onychomycosis, fungal keratitis, invasive infections, and disseminated diseases. These pathologies have a very difficult therapeutic management and poor therapeutic responses, especially in patients with disseminated infection. Little information is available regarding the molecular mechanisms responsible for antifungal resistance in these fungi. methods: In this study, we performed a quantitative analysis of the transcriptional profile of F. oxysporum and F. solani, challenged with amphotericin B (AMB) and posaconazole (PSC) using RNA-seq. Quantitative real-time reverse transcription PCR (qRT-PCR) was used to validate the results results: Several genes related to mechanisms of antifungal resistance such as efflux pumps, ergosterol pathway synthesis, and responses to oxidative stress were found. Genes such as ERG11, ERG5, the Major Facilitator Superfamily (MFS), thioredoxin, and different dehydrogenase genes may explain the reduced susceptibility of Fusarium spp. against azoles and the possible mechanisms that may play an important role in induced resistance against polyenes. conclusions: Important differences in the levels of transcriptional expression were found between F. oxysporum and F. solani exposed to the two different antifungal treatments. Knowledge on the gene expression profiles and gene regulatory networks in Fusarium spp. during exposure to antifungal compounds, may help to identify possible molecular targets for the development of novel, better, and more specific therapeutic compounds.