Project description:Purpose: The goal of this study was to track fluctuations in gene expression across all defined life cycle stages of the cattle lungworm Dictyocaulus viviparus. Methods: Batches of worms from a Hannover, Germany strain were harvested in duplicate as eggs, L1, L2, L3, L4, hypobiotic L5, mixed-sex L5, male L5, female L5, mature males and mature females. RNA was isolated, reverse transcribed and sequenced on the Illumina platform. Finally, reads were mapped to the D. viviparus draft genome assembly and read counts associated with each feature were used to estimate gene expression levels and predict differential gene expression at various transitional points across the life cycle. Results: Principal component analyses indicated that major gene expression shifts occur upon hatching, infection of the bovid host, and sexual maturation.
Project description:A 50-mer oligonucleotide microarray was designed for large-scale gene expression analysis in Z. viviparus. To measure the expression of the probes and the corresponding assembled transcripts, the pool of mRNA used for the sequencing was hybridized.
Project description:A 50-mer oligonucleotide microarray was designed for large-scale gene expression analysis in Z. viviparus. To measure the expression of the probes and the corresponding assembled transcripts, the pool of mRNA used for the sequencing was hybridized. 1 Sample hybridized to microarray used to evaluate the transcript assembly described in Kristiansson et al 2009.
Project description:BACKGROUND: Lungworms of the genus Dictyocaulus (family Dictyocaulidae) are parasitic nematodes of major economic importance. They cause pathological effects and clinical disease in various ruminant hosts, particularly in young animals. Dictyocaulus viviparus, called the bovine lungworm, is a major pathogen of cattle, with severe infections being fatal. In this study, we provide first insights into the transcriptome of the adult stage of D. viviparus through the analysis of expressed sequence tags (ESTs). RESULTS: Using our EST analysis pipeline, we estimate that the present dataset of 4436 ESTs is derived from 2258 genes based on cluster and comparative genomic analyses of the ESTs. Of the 2258 representative ESTs, 1159 (51.3%) had homologues in the free-living nematode C. elegans, 1174 (51.9%) in parasitic nematodes, 827 (36.6%) in organisms other than nematodes, and 863 (38%) had no significant match to any sequence in the current databases. Of the C. elegans homologues, 569 had observed 'non-wildtype' RNAi phenotypes, including embryonic lethality, maternal sterility, sterility in progeny, larval arrest and slow growth. We could functionally classify 776 (35%) sequences using the Gene Ontologies (GO) and established pathway associations to 696 (31%) sequences in Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, we predicted 85 secreted proteins which could represent potential candidates for developing novel anthelmintics or vaccines. CONCLUSION: The bioinformatic analyses of ESTs data for D. viviparus has elucidated sets of relatively conserved and potentially novel genes. The genes discovered in this study should assist research toward a better understanding of the basic molecular biology of D. viviparus, which could lead, in the longer term, to novel intervention strategies. The characterization of the D. viviparus transcriptome also provides a foundation for whole genome sequence analysis and future comparative transcriptomic analyses.