Project description:This SuperSeries is composed of the following subset Series:; GSE10137: A Genomic Approach to Improve Prognosis and Predict Therapeutic Response in Chronic Lymphocytic Leukemia (Mayo_Ohio); GSE10138: A Genomic Approach to Improve Prognosis and Predict Therapeutic Response in Chronic Lymphocytic Leukemia (Duke_VA) Experiment Overall Design: Refer to individual Series
Project description:B cell chronic lymphocytic leukemia - A model with immune response
Seema Nanda 1, , Lisette dePillis 2, and Ami Radunskaya 3,
1.
Tata Institute of Fundamental Research, Centre for Applicable Mathematics, Bangalore 560065, India
2.
Department of Mathematics, Harvey Mudd College, Claremont, CA 91711
3.
Department of Mathematics, Pomona College, Claremont, CA, 91711, United States
Abstract
B cell chronic lymphocytic leukemia (B-CLL) is known to have substantial clinical heterogeneity. There is no cure, but treatments allow for disease management. However, the wide range of clinical courses experienced by B-CLL patients makes prognosis and hence treatment a significant challenge. In an attempt to study disease progression across different patients via a unified yet flexible approach, we present a mathematical model of B-CLL with immune response, that can capture both rapid and slow disease progression. This model includes four different cell populations in the peripheral blood of humans: B-CLL cells, NK cells, cytotoxic T cells and helper T cells. We analyze existing data in the medical literature, determine ranges of values for parameters of the model, and compare our model outcomes to clinical patient data. The goal of this work is to provide a tool that may shed light on factors affecting the course of disease progression in patients. This modeling tool can serve as a foundation upon which future treatments can be based.
Keywords: NK cell, chronic lymphocytic leukemia, mathematical model, T cell., B-CLL.
Project description:Chronic lymphocytic leukemia (CLL) is a heterogeneous malignancy, characterized by a variable clinical course. While clinical and laboratory parameters are increasingly being used to refine prognosis, they do not accurately predict response to commonly used therapy. We used gene expression profiling to generate and further refine prognostic and predictive markers. Genomic signatures that reflect progressive disease and responses to chemotherapy or chemo-immunotherapy were created using cancer cell lines and patient leukemia samples. We validated these signatures using independent clinical data from four separate cohorts representing a total of 301 CLL patients. A prognostic genomic signature created from patient leukemic cell gene expression data coupled with clinical parameters could statistically differentiate patients with stable or progressive disease in the training dataset. The progression signature was then validated in two independent datasets, demonstrating a capacity to accurately identify patients at risk for progressive disease. In addition, two distinct genomic signatures that predict response to chlorambucil or pentostatin, cyclophosphamide, and rituximab were also generated and were shown to accurately distinguish responding and non-responding CLL patients. Microarray analysis of CLL patientsâ lymphocytes can be used to refine prognosis and predict response to different therapies. These results have direct implications for standard and investigational therapeutics in CLL patients. Experiment Overall Design: For the predictive genomic signature or response to pentostatin, cyclophosphamide, and rituximab, 20 CLL leukemia samples were used in the training set, and 20 CLL leukemia samples were used in the validation set
Project description:Chronic lymphocytic leukemia (CLL) is a heterogeneous malignancy, characterized by a variable clinical course. While clinical and laboratory parameters are increasingly being used to refine prognosis, they do not accurately predict response to commonly used therapy. We used gene expression profiling to generate and further refine prognostic and predictive markers. Genomic signatures that reflect progressive disease and responses to chemotherapy or chemo-immunotherapy were created using cancer cell lines and patient leukemia samples. We validated these signatures using independent clinical data from four separate cohorts representing a total of 301 CLL patients. A prognostic genomic signature created from patient leukemic cell gene expression data coupled with clinical parameters could statistically differentiate patients with stable or progressive disease in the training dataset. The progression signature was then validated in two independent datasets, demonstrating a capacity to accurately identify patients at risk for progressive disease. In addition, two distinct genomic signatures that predict response to chlorambucil or pentostatin, cyclophosphamide, and rituximab were also generated and were shown to accurately distinguish responding and non-responding CLL patients. Microarray analysis of CLL patientsâ lymphocytes can be used to refine prognosis and predict response to different therapies. These results have direct implications for standard and investigational therapeutics in CLL patients. Experiment Overall Design: For the prognostic genomic signature, 68 CLL leukemia samples were used (36 from patients with stable disease and 32 from patients with progressive disease).
Project description:Chronic lymphocytic leukemia (CLL) is a heterogeneous malignancy, characterized by a variable clinical course. While clinical and laboratory parameters are increasingly being used to refine prognosis, they do not accurately predict response to commonly used therapy. We used gene expression profiling to generate and further refine prognostic and predictive markers. Genomic signatures that reflect progressive disease and responses to chemotherapy or chemo-immunotherapy were created using cancer cell lines and patient leukemia samples. We validated these signatures using independent clinical data from four separate cohorts representing a total of 301 CLL patients. A prognostic genomic signature created from patient leukemic cell gene expression data coupled with clinical parameters could statistically differentiate patients with stable or progressive disease in the training dataset. The progression signature was then validated in two independent datasets, demonstrating a capacity to accurately identify patients at risk for progressive disease. In addition, two distinct genomic signatures that predict response to chlorambucil or pentostatin, cyclophosphamide, and rituximab were also generated and were shown to accurately distinguish responding and non-responding CLL patients. Microarray analysis of CLL patients’ lymphocytes can be used to refine prognosis and predict response to different therapies. These results have direct implications for standard and investigational therapeutics in CLL patients. Keywords: Gene Expression Profiling of two phenotypic states
Project description:Chronic lymphocytic leukemia (CLL) is a heterogeneous malignancy, characterized by a variable clinical course. While clinical and laboratory parameters are increasingly being used to refine prognosis, they do not accurately predict response to commonly used therapy. We used gene expression profiling to generate and further refine prognostic and predictive markers. Genomic signatures that reflect progressive disease and responses to chemotherapy or chemo-immunotherapy were created using cancer cell lines and patient leukemia samples. We validated these signatures using independent clinical data from four separate cohorts representing a total of 301 CLL patients. A prognostic genomic signature created from patient leukemic cell gene expression data coupled with clinical parameters could statistically differentiate patients with stable or progressive disease in the training dataset. The progression signature was then validated in two independent datasets, demonstrating a capacity to accurately identify patients at risk for progressive disease. In addition, two distinct genomic signatures that predict response to chlorambucil or pentostatin, cyclophosphamide, and rituximab were also generated and were shown to accurately distinguish responding and non-responding CLL patients. Microarray analysis of CLL patients’ lymphocytes can be used to refine prognosis and predict response to different therapies. These results have direct implications for standard and investigational therapeutics in CLL patients. Keywords: Gene Expression Profiling of two phenotypic states (responders versus progressors)
Project description:UGT2B17 is a recently identified molecular marker for poor prognosis and drug response in Chronic Lymphocytic Leukemia (CLL), which is the most prevalent adult leukemia subtype in the western world. The goal of this study was to investigate transcriptome changes associated with drug-induced UGT2B17 up-regulation to identify possible upstream regulators of drug response and downstream effects of UGT induction.