Project description:Analysis of LBNF1 rat testes from controls, containing both somatic and all germ cell types and from irradiated rats in which all cells germ cells except type A spermatgogonia are eliminated. Results provide insight into distinguishing germ and somatic cell genes and identification of somatic cell genes that are upregulated after irradiation.
Project description:This is a study to explore the transcriptional changes after Adjudin treatment in adult rat testes at three time points (control, 8 hour and 4 day). Adjudin, [1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide], is a potential male contraceptive that targets the Sertoli-germ cell interface and causes germ cell depletion from the seminiferous epithelium. Adjudin has been proved to be a useful model to study the mechanisms that regulate junction restructuring in the testis. Experiment Overall Design: Sprague-Dawley rats treated with a single dose of Adjudin at 50 mg/kg b.w. by gavage and terminated after 8 hours (n=2) and 4 days (n=3). Testes from Adjudin-treated rats and untreated (control, n=3) rats were harvested and total RNA were prepared. Standard Affymetrix genechip procedures were followed for the subsequent experiments. Data were analysed in MAS 5.0 and GeneSpring 7.2.
Project description:Male Sprague-Dawley rats were used to establish exhausted-exercise model by motorized rodent treadmill. Yu-Ping-Feng-San at doses of 2.18 g/kg was administrated by gavage before exercise training for 10 consecutive days. Quantitative proteomics was performed for assessing the related mechanism of Yu-Ping-Feng-San.
Project description:Analysis of hormone effects on irradiated LBNF1 rat testes, which contain only somatic cells except for a few type A spermatgogonia. Rats were treated for 2 weeks with either sham treatment (group X), hormonal ablation (GnRH antagonist and the androgen receptor antagonist flutamide, group XAF), testosterone supplementation (GnRH antagonist and testosterone, group XAT), and FSH supplementation ((GnRH antagonist, androgen receptor antagonist, and FSH, group XAFF). Results provide insight into identifying genes in the somatic testis cells regulated by testosterone, LH, or FSH.
Project description:A series of two color gene expression profiles obtained using Agilent 44K expression microarrays was used to examine sex-dependent and growth hormone-dependent differences in gene expression in rat liver. This series is comprised of pools of RNA prepared from untreated male and female rat liver, hypophysectomized (‘Hypox’) male and female rat liver, and from livers of Hypox male rats treated with either a single injection of growth hormone and then killed 30, 60, or 90 min later, or from livers of Hypox male rats treated with two growth hormone injections spaced 3 or 4 hr apart and killed 30 min after the second injection. The pools were paired to generate the following 6 direct microarray comparisons: 1) untreated male liver vs. untreated female liver; 2) Hypox male liver vs. untreated male liver; 3) Hypox female liver vs. untreated female liver; 4) Hypox male liver vs. Hypox female liver; 5) Hypox male liver + 1 growth hormone injection vs. Hypox male liver; and 6) Hypox male liver + 2 growth hormone injections vs. Hypox male liver. A comparison of untreated male liver and untreated female liver liver gene expression profiles showed that of the genes that showed significant expression differences in at least one of the 6 data sets, 25% were sex-specific. Moreover, sex specificity was lost for 88% of the male-specific genes and 94% of the female-specific genes following hypophysectomy. 25-31% of the sex-specific genes whose expression is altered by hypophysectomy responded to short-term growth hormone treatment in hypox male liver. 18-19% of the sex-specific genes whose expression decreased following hypophysectomy were up-regulated after either one or two growth hormone injections. Finally, growth hormone suppressed 24-36% of the sex-specific genes whose expression was up-regulated following hypophysectomy, indicating that growth hormone acts via both positive and negative regulatory mechanisms to establish and maintain the sex specificity of liver gene expression. For full details, see V. Wauthier and D.J. Waxman, Molecular Endocrinology (2008)