Project description:The role of innate immunity in modulating severity of chemotherapy-induced complications is so far unclear. The aim of this study was to determine how TLR2 may influence MTX-induced mucositis in the small intestine in mice. We used microarrays to assess gene expression profiles in proximal jejunum of WT vs. TLR2 KO mice after systemic treatment with MTX. Mucositis was induced by i.p. injection of MTX [40mg/kg BW/d] for 4 days in WT or TLR2 knockout (KO) mice. On day 7, mice were sacrificed and RNA was extracted from proximal jejunum (n=3 mice/group) and hybridized on Affymetrix microarrays.
Project description:The role of innate immunity in modulating severity of chemotherapy-induced complications is so far unclear. The aim of this study was to determine how TLR2 may influence MTX-induced mucositis in the small intestine in mice. We used microarrays to assess gene expression profiles in proximal jejunum of WT vs. TLR2 KO mice after systemic treatment with MTX.
Project description:Methotrexate (MTX) has been widely used for the treatment of a variety of tumors as well as for inflammatory diseases and rheumatoid arthritis (RA). MTX-induced toxicity has been a serious unpredictable side effect of the treatment and an important clinical problem. Possible causes include allergic, cytotoxic or immunologic reactions to this agent. We examined the consequences of the mechanism of MTX-induced pulmonary toxicity gene expression in BEAS-2B cells, huma bronchial cell line, by microarray. The expression of these genes are potential biomarker of methotrexate-induced pulmonary toxicity. Also, We provide a clue about mechanism of pulmonary toxic action by these clinical chemotherapeutic agents. Keywords: 48h treatment, 0.144uM (dose), MTX
Project description:A summary of the work associated to these microarrays is the following: Methotrexate (MTX) is one of the earliest cytotoxic drugs used in cancer therapy, and despite the isolation of multiple other folate antagonists, methotrexate maintains its significant role as a treatment for different types of cancer and other disorders. The usefulness of treatment with methotrexate is limited by the development of drug resistance, which may be acquired through different ways. To get insights into the mechanisms associated with drug resistance and sensitization we have performed a functional analysis of genes deregulated in methotrexate resistant cells, either due to its co-amplification with the DHFR gene or as a result of a transcriptome screening using microarrays. Genes adjacent to dhfr locus and included in the 5q14 amplicon were overexpressed in HT29 MTX-resistant cells. Treatment with siRNAs against those genes caused a slight reduction in cell viability in both HT29 sensitive and resistant cells. On the other hand, microarray analysis of HT29 and HT29 MTX resistant cells unveiled overexpression of caveolin 1, enolase 2 and PKCa genes in treated cells without concomitant copy number gain. siRNAs against these three genes effectively reduced cell viability and caused a decreased MTX resistance capacity. Moreover, overexpression of E-cadherin, which was found underexpressed in MTX-resistant cells, also sensitized the cells toward the chemotherapeutic agent. We provide functional evidences indicating that caveolin 1 and E-cadherin may play a critical role in cell survival and may constitute potential targets for coadjuvant therapy. Keywords: DHFR, Methotrexate, drug resistance
Project description:A summary of the work associated to these microarrays is the following:; Methotrexate (MTX) is one of the earliest cytotoxic drugs used in cancer therapy, and despite the isolation of multiple other folate antagonists, methotrexate maintains its significant role as a treatment for different types of cancer and other disorders. The usefulness of treatment with methotrexate is limited by the development of drug resistance, which may be acquired through different ways. To get insights into the mechanisms associated with drug resistance and sensitization we have performed a functional analysis of genes deregulated in methotrexate resistant cells, either due to its co-amplification with the DHFR gene or as a result of a transcriptome screening using microarrays. Genes adjacent to dhfr locus and included in the 5q14 amplicon were overexpressed in HT29 MTX-resistant cells. Treatment with siRNAs against those genes caused a slight reduction in cell viability in both HT29 sensitive and resistant cells. On the other hand, microarray analysis of HT29 and HT29 MTX resistant cells unveiled overexpression of caveolin 1, enolase 2 and PKCa genes in treated cells without concomitant copy number gain. siRNAs against these three genes effectively reduced cell viability and caused a decreased MTX resistance capacity. Moreover, overexpression of E-cadherin, which was found underexpressed in MTX-resistant cells, also sensitized the cells toward the chemotherapeutic agent. We provide functional evidences indicating that caveolin 1 and E-cadherin may play a critical role in cell survival and may constitute potential targets for coadjuvant therapy. Experiment Overall Design: Two cell lines are compared in the study, which are HT29 colon cancer cells sensitive to methotrexate and HT29 cells resistant to 10e-5M MTX. Six samples are provided which correspond to triplicated of each cell line. The samples provided were subsequently normalyzed and analyzed using the specific software GeneSpring GX v7.3.1.
Project description:Methotrexate (MTX) is an anti-folate drug used to treat inflammatory diseases such as rheumatoid arthritis. The changes induced by MTX were profiled within EA.hy 926 cells grown in normal (Hi) and low (Lo) folate. Several inflammatory genes were up regulated and several mitosis related genes were down regulated. Hi and Lo cells were grown to confluence and maintained in fresh medium for 24 hours prior to treatment with 0.5uM MTX for 48 hours.
Project description:Background: Methotrexate (MTX) is the first line treatment of rheumatoid arthritis (RA), and methylation changes in bulk T cells have been reported after treatment with MTX. We have investigated cell-type specific DNA methylation changes across the genome in naïve and memory CD4+ T cells before and after MTX treatment of RA patients. DNA methylation profiles of newly diagnosed RA patients (N=9) were assessed by reduced representation bisulfite sequencing. Results: We found that MTX treatment significantly influenced DNA methylation levels at multiple CpG sites in both cell populations. Interestingly, we identified differentially methylated sites annotated to two genes; TRIM15 and SORC2, previously reported to predict treatment outcome in RA patients when measured in bulk T cells. Furthermore, several of the genes, including STAT3, annotated to the significant CpG sites are relevant for RA susceptibility or the action of MTX. Conclusion: We detected CpG sites that were associated with MTX treatment in CD4+ naïve and memory T cells isolated from RA patients. Several of these sites overlap genetic regions previously associated with RA risk and MTX treatment outcome.
Project description:The abstract of the associated publication (Selga E, Noé V, Ciudad CJ. Biochemical Pharmacology, 2008) is the following: While studying differentially expressed genes between sensitive and 10-5 M Methotrexate (MTX) resistant HT29 human colon cancer cells, we identified some members of the aldo-keto reductase (AKR) superfamily. The study was followed with the member AKR1C1 (EC 1.1.1.213), validating its increase in mRNA and protein levels in MTX resistant cells. The genomic content for AKR1C1 remained unchanged between sensitive and resistant cells, thereby excluding a mechanism of AKR1C1 gene amplification. Thus, we cloned the AKR1C1 human promoter and performed luciferase experiments that revealed a transcriptional regulation of the gene in the resistant cells. Computational studies showed a putative binding site for the transcription factor Sp1. The co-transfection of Sp1 or Sp3 with different constructs of AKR1C1 promoter deletions, including and excluding the proximal GC-box, demonstrated a key role for these factors in regulating AKR1C1 transcriptional activity. Gel-shift assays revealed an increase in Sp1 and Sp3 binding in resistant compared to sensitive cells, without differences in Sp1 protein levels. Dephosphorylation of the extracts coincided with a decrease in Sp1 binding, which is consistent with a process of regulation of Sp1 by phosphorylation. We also investigated the possible relationship between AKR1C1 expression and MTX action. Overexpression of AKR1C1 counteracted the S-phase accumulation of cells and apoptosis caused by MTX treatment. This suggests a role of AKR1C1 in cell proliferation. Finally, overexpression of AKR1C1 in MTX sensitive HT29 cells conferred resistance to the chemotherapeutic agent and silencing of AKR1C1 by means of iRNA technology sensitized the cells to MTX. Keywords: DHFR, Methotrexate, drug-resistance
Project description:au11-02_cho-thf - shoots and roots treated with methotrexate and 5-formyl-thf - Folates and 1C metabolism - The objective of this study is to investigate the changes on the plant expression profiles due to 5-CHO-THF assimilation and transformation. Additionally, plants supplemented with methotrexate (MTX) (an inhibitor of folate biosynthesis) will complement the study. Results from this work will serve to better understand the effects of folate accumulation in plants. 12 dye-swap - treated vs untreated comparison