Project description:To determine Sigma 54 (SigL) reglons in Bacillus thuringiensis HD73 strain, A sigLmutant, HD(ΔsigL::kan), was constructed with insertion of kanamycin resistance gene cassete. We have employed whole genome microarray expression profiling as a discovery platform to identify the difference of gene expression between mutant and wild-type strains.
Project description:We investigated the gene expression and metabolic regulatory mechanisms associated with the high-level accumulation of ICPs by performing the transcriptomics analysis of B. thuringiensis strain CT-43, using Illumina high throughout sequencing (RNA-seq) technique.
Project description:To determine Sigma 54 (SigL) reglons in Bacillus thuringiensis HD73 strain, A sigLmutant, HD(M-NM-^TsigL::kan), was constructed with insertion of kanamycin resistance gene cassete. We have employed whole genome microarray expression profiling as a discovery platform to identify the difference of gene expression between mutant and wild-type strains. 2 ml samples were separately harvested from B. thuringiensis HD73 and HD(M-NM-^TsigL::kan) strains grown in SchaefferM-bM-^@M-^Ys sporulation medium (SSM) at stages T7 of stationary phase (7 hours after the end of the exponential phase). Three independent repeats were performed for each stain.
Project description:We investigated the gene expression and metabolic regulatory mechanisms associated with the high-level accumulation of ICPs by performing the transcriptomics analysis of B. thuringiensis strain CT-43, using Illumina high throughout sequencing (RNA-seq) technique. The bacterial cells were collected at the time points of 7 h, 9 h, 13 h and 22 h for the whole-genome transcriptomics, respectively.
Project description:Transcriptional profiling of C. elegans nasp-1 / btr-1 mutant worms versus wild type N2 strain, both exposed to the bacterial pathogen Bacillus thuringiensis DB27.
Project description:Transcriptional profiling of C. elegans nasp-1 / btr-1 mutant worms versus wild type N2 strain, both exposed to the bacterial pathogen Bacillus thuringiensis DB27. One-condition experiment. C. elegans nasp-1 / btr-1 mutant versus N2, exposed to Bacillus thuringiensis DB27. 3 biological replicates, including 1 dye-swaps.
Project description:Bacillus thuringiensis has insecticidal activity against a variety of important agricultural pests and exhibits good bacteriostatic resistance to a variety of plant pathogens, and recentily study have shown that two strains of Bt (B88-82 and RG1-6 Strain) can induce the tomato to produce resistance to R. solanacearum. However, only the induced signal pathway has been studied, and its active substances are not reported. The aim of this study was to further explore the Bt strain that could induce plant disease resistance and study the induced activity of the Bt strain, and to study the signal pathway induced by transcriptional sequencing and fluorescence quantitative PCR. The results showed that there were 303 differentially expressed genes in rape after induction of 4F5 strain, among which 86 genes were up-regulated and 217 genes weredown-regulated. The result of 4BM1 strain induction was induced by transcriptase sequencing. There were 126 differentially expressed genes in rape. Among which 64 genes were up-regulated and 62 genes were down-regulated. The analysis of these differentialexpression genes revealed that they contained Salicylic acid pathway and Ethylene pathway-related genes, which need to be further verified.
Project description:Comparison in late exponential phase (culture OD600 = 3) of global expression profiles from a Bacillus thuringiensis 407 strain overexpressing transcriptional regulator MogR from xylose inducible vector pHT304-Pxyl, versus an isogenic empty vector control strain, to analyze global expression changes resulting from MogR overexpression