Project description:Glutamine is a key nutrient for tumor cells that supports nucleotide and amino acid biosynthesis, replenishes the TCA cycle intermediates and contributes to redox metabolism. We identified oncogenic KRAS as a critical regulator of the response to glutamine deprivation in NSCLC. Full activation of the ATF4 stress response pathway is dependent on expression of NRF2 downstream of oncogenic KRAS in NSCLC. Through this mechanism, KRAS alters amino acid uptake and metabolism and sustains mTORC1 signaling during nutrient stress. Furthermore, we identified regulation of asparagine synthetase (ASNS) as a key effect of oncogenic KRAS signaling via ATF4 during glutamine deprivation, and a potential therapeutic target in KRAS mutant NSCLC.
Project description:Glutamine is a key nutrient for tumor cells that supports nucleotide and amino acid biosynthesis, replenishes the TCA cycle intermediates and contributes to redox metabolism. We identified oncogenic KRAS as a critical regulator of the response to glutamine deprivation in NSCLC. Full activation of the ATF4 stress response pathway is dependent on expression of NRF2 downstream of oncogenic KRAS in NSCLC. Through this mechanism, KRAS alters amino acid uptake and metabolism and sustains mTORC1 signaling during nutrient stress. Furthermore, we identified regulation of asparagine synthetase (ASNS) as a key effect of oncogenic KRAS signaling via ATF4 during glutamine deprivation, and a potential therapeutic target in KRAS mutant NSCLC.
Project description:Glutamine is a key nutrient for tumor cells that supports nucleotide and amino acid biosynthesis, replenishes the TCA cycle intermediates and contributes to redox metabolism. We identified oncogenic KRAS as a critical regulator of the response to glutamine deprivation in NSCLC. Full activation of the ATF4 stress response pathway is dependent on expression of NRF2 downstream of oncogenic KRAS in NSCLC. Through this mechanism, KRAS alters amino acid uptake and metabolism and sustains mTORC1 signaling during nutrient stress. Furthermore, we identified regulation of asparagine synthetase (ASNS) as a key effect of oncogenic KRAS signaling via ATF4 during glutamine deprivation, and a potential therapeutic target in KRAS mutant NSCLC.
Project description:Mutant KRAS (mut-KRAS) is present in 30% of all human cancers and plays a critical role in cancer cell growth and resistance to therapy. There is evidence from colon cancer that mut-KRAS is a poor prognostic factor and negative predictor of patient response to molecularly targeted therapy. However, evidence for such a relationship in non small cell lung cancer (NSCLC) is conflicting. KRAS mutations are primarily found at codons 12 and 13, where different base changes lead to alternate amino acid substitutions that lock the protein in an active state. The patterns of mut-KRas amino acid substitutions in colon cancer and NSCLC are quite different, with aspartate (D) predominating in colon cancer (50%) and cysteine (C) in NSCLC (47%). Through an analysis of a recently completed biopsy biomarker-driven, molecularly targeted multi-arm trial of 215 evaluable patients with refractory NSCLC we show that mut-KRas-G12C/V but not total mut-KRAS predicts progression free survival for the overall group, and for the sorafenib and vandetanib treatment arms. Transcriptome microarray data shows differential expression of cell cycle genes between mut-KRas-G12C/V and G12D patient tumors. A panel of NSCLC cell lines with known mut-KRas amino acid substitutions was used to identify pathways activated by the different mut-KRas, showing that mut-KRas-G12D activates both PI-3-K and MEK signaling, while mut-KRas G12C does not, and alternatively activates RAL signaling. This finding was confirmed using immortalized human bronchial epithelial cells stably transfected with wt-KRAS and different forms of mut-KRAS. Molecular modeling studies show that the different conformation imposed by mut-KRas-G12C could lead to altered association with downstream signaling transducers compared to wild type and mut-KRas-G12D. The significance of the findings for developing mut-KRAS therapies is profound, since it suggests that not all mut-KRas amino acid substitutions signal to effectors in a similar way, and may require different therapeutic interventions. Gene expression profiles were measured in 22 core biopsies from patients with refractory non-small cell lung cancer included in the Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer Elimination (BATTLE). All tumors were KRAS mutants, but with different patterns of amino acid substitutions. Supervised analysis of transcriptome profiling was performed to compare cysteine or valine KRAS mutants with other KRAS mutants.
Project description:Oncogenic signals often activate abnormal proliferation, while simultaneously activate stress-adaptive mechanisms such as the integrated stress response (ISR) to ensure rapid growth under intrinsic and extrinsic stress conditions. In this study, we investigated the involvement of EGFR-PI3K pathway in the regulation of ISR in EGFR-mutant NSCLC cell lines under amino acid deprivation. We found that the third generation EGFR inhibitor osiemrtinib suppressed induction of activation transcription factor 4 (ATF4), the key ISR effector, in EGFR mutant cells, while the effect was to a less extent in cells harboring PIK3CA-co-alteration. PI3K inhibitors including P110a-specific inhibitor alpelicib markedly suppress ATF4 induction in PIK3CA-mutant cell lines. To further explore the role of EGFR-PI3K, transcriptome analysis was performed in EGFR- and PIK3CA-mutated NCI-H1975 cells treated with osimertinib, alpelisib, or combination of these in the absence or presence of histidyl-tRNA inhibitor L-histidinol (His), mimicking amino acid deprived conditions. Among His-induced genes, either osimertinib or alpelisib partially, but the combination dramatically suppressed a cluster of genes targeted by ATF4. Furthermore, combination of osimertinib and alpelisib increased apoptotic cells under amino acid deprived conditions. These results indicate that oncogenic EGFR-PI3K pathway contributes to cellular adaptation to stress conditions through ATF4. We used microarrays to identify genes whose expression is up- or down-regulated by inhibition of EGFR, PI3K, or both under amino acid deprivation.
Project description:The integrated stress response (ISR) is a conserved pathway which is activated by cells that are exposed to stress. In lung adenocarcinoma (LUAD), activation of the ATF4 branch of the ISR by particular oncogenic mutations has been linked to the regulation of amino acid metabolism. In the present study, we provide evidence for ATF4 activation across multiple stages and molecular subtypes of human LUAD. In response to extracellular amino acid limitation, LUAD cells with diverse genotypes broadly induce ATF4 in an eIF2α dependent manner, which can be blocked pharmacologically using the integrated stress response inhibitor (ISRIB). Although suppressing eIF2α or ATF4 can trigger different biological consequences, adaptive cell cycle progression and cell migration are particularly sensitive to inhibition of the ISR. These phenotypes specifically require the ATF4 target gene asparagine synthetase (ASNS), which maintains protein translation independently of the mTOR/PI3K pathway. Moreover, NRF2 protein levels and oxidative stress can be modulated by the ISR downstream of ASNS. Finally, we demonstrate that the ISR via ASNS controls the biosynthesis of select proteins, including the cell cycle regulator cyclin B1, which are associated with poor LUAD patient prognosis. Our findings uncover new regulatory layers of the ISR pathway and its control of proteostasis in lung cancer cells as they adapt to metabolic barriers during tumor progression.
Project description:Mutant KRAS (mut-KRAS) is present in 30% of all human cancers and plays a critical role in cancer cell growth and resistance to therapy. There is evidence from colon cancer that mut-KRAS is a poor prognostic factor and negative predictor of patient response to molecularly targeted therapy. However, evidence for such a relationship in non small cell lung cancer (NSCLC) is conflicting. KRAS mutations are primarily found at codons 12 and 13, where different base changes lead to alternate amino acid substitutions that lock the protein in an active state. The patterns of mut-KRas amino acid substitutions in colon cancer and NSCLC are quite different, with aspartate (D) predominating in colon cancer (50%) and cysteine (C) in NSCLC (47%). Through an analysis of a recently completed biopsy biomarker-driven, molecularly targeted multi-arm trial of 215 evaluable patients with refractory NSCLC we show that mut-KRas-G12C/V but not total mut-KRAS predicts progression free survival for the overall group, and for the sorafenib and vandetanib treatment arms. Transcriptome microarray data shows differential expression of cell cycle genes between mut-KRas-G12C/V and G12D patient tumors. A panel of NSCLC cell lines with known mut-KRas amino acid substitutions was used to identify pathways activated by the different mut-KRas, showing that mut-KRas-G12D activates both PI-3-K and MEK signaling, while mut-KRas G12C does not, and alternatively activates RAL signaling. This finding was confirmed using immortalized human bronchial epithelial cells stably transfected with wt-KRAS and different forms of mut-KRAS. Molecular modeling studies show that the different conformation imposed by mut-KRas-G12C could lead to altered association with downstream signaling transducers compared to wild type and mut-KRas-G12D. The significance of the findings for developing mut-KRAS therapies is profound, since it suggests that not all mut-KRas amino acid substitutions signal to effectors in a similar way, and may require different therapeutic interventions.