Project description:A. niger and A. oryzae are two filamentous fungi widely used in industry to produce various enzymes (e.g. pectinases, amylases) and metabolites (e.g. citric acid). Using proteomics, the co-cultivation of these two fungi in wheat bran showed an equal distribution of the two strains forming mixed colonies with a broad range of carbohydrate active enzymes produced. This stable mixed microbial system seems suitable for subsequent commercial processes such as enzyme production. XlnR knock-out strains for both aspergilli were used to study the influence of plant cell wall degrading enzyme production on the fitness of the mixed culture.
Project description:Violacein, an indole-derived purple-colored natural pigment isolated from Chromobacterium violaceum has shown multiple biological activities. In this study, we report that violacein activates murine macrophages through the up-regulation of TNF-α expression at non-cytotoxic concentrations (2 µmol/L). This was evaluated by measurement of TNF-α expression using real-time qRT-PCR. In addition, we obtained evidence of the molecular mechanism of activation by determining the mRNA expression pattern upon treatment with violacein. Interestingly, the mRNA expression pattern also allowed us to observe that incubation with violacein caused activation of pathways related with an immune and inflammatory response. Together, our data indicate that violacein activates the TLR8 receptor signaling pathway, and in consequence induces production of inflammatory cytokines such as TNF-α, CCL3 and CCL4 and of negative regulators of TLR signaling such as AP20, IRG1, IκBα and IκBε. Finally, we studied the interaction of TLR8 with violacein in silico, and obtained evidence that violacein could bind to TLR8 in a similar fashion to imidazoquinoline compounds. Therefore, our results indicate that violacein could be a candidate to be applied in immune therapy.
Project description:Caldicellulosiruptor saccharolyticus is an extremely thermophilic, Gram-positive anaerobe, which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO2 and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to co-utilize glucose and xylose, make this bacterium an attractive candidate for microbial bioenergy production. Glycolytic pathways and an ABC-type sugar transporter were significantly up-regulated during growth on glucose and xylose, indicating that C. saccharolyticus co-ferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks represents a highly desirable feature of a lignocellulose-utilizing, biofuel-producing bacterium. Keywords: substrate response
Project description:Polyhydroxyalkanoates (PHAs) are bio-based, biodegradable polyesters that can be produced from organic-rich waste streams using mixed microbial cultures. To maximize PHA production, mixed microbial cultures may be enriched for PHA-producing bacteria with a high storage capacity through the imposition of cyclic, aerobic feast-famine conditions in a sequencing batch reactor (SBR). Though enrichment SBRs have been extensively investigated a bulk solutions-level, little evidence at the proteome level is available to describe the observed SBR behavior to guide future SBR optimization strategies. As such, the purpose of this investigation was to characterize proteome dynamics of a mixed microbial culture in an SBR operated under aerobic feast-famine conditions using fermented dairy manure as the feedstock for PHA production. At the beginning of the SBR cycle, excess PHA precursors were provided to the mixed microbial culture (i.e., feast), after which followed a long duration devoid of exogenous substrate (i.e., famine). Two-dimensional electrophoresis was used to separate protein mixtures during a complete SBR cycle, and proteins of interest were identified.
Project description:Differences in genome size and gene content are among the most important signatures of microbial adaptation and genome evolution. Here, we investigated the patterns of genome variation among strains of the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti. Using the sequenced strain Rm1021 as a reference, the genome size and gene content variations were analyzed among ten diverse natural strains, through pulse field gel electrophoresis (PFGE) and whole-genome microarray hybridizations. Our PFGE analysis showed a genome size range of 6.45-7.01Mbp, with the greatest variation arising from the pSymA replicon, followed by that of pSymB. No observable size difference was evident among the chromosomes. Consistent with this pattern of size differences, 41.2% of ORFs on pSymA were variably absent/present, followed by 12.7% on pSymB, and 3.7% on the chromosome. However, the percentages of ORFs that were variably duplicated were more evenly distributed among the three replicons, 11.0%, 16.5% and 15.3% respectively for ORFs on pSymA, pSymB and the chromosome. Among the 10 strains, the percentages of absent ORFs ranged from 1.51% to 6.35% and those of duplicated ORFs ranged from 0.27% to 8.56%. Our analyses showed that host plants, geographic origins, multilocus enzyme electrophoretic types, and replicon sizes had little influence on the distribution patterns of absent or duplicated ORFs. The proportions of ORFs that were either variably absent/present or variably duplicated differed greatly among the functional categories, for each of the three replicons as well as for the whole genome. Interestingly, we observed positive correlations among the three replicons in their numbers of absent ORFs as well as the numbers of duplicated ORFs, consistent with coordinated gene gains/losses in this important bacterium in nature. microarray:Sm6kOligo A total of 12 strains were included for the microarray analyses in this study. The 12 strains included two reference strains and ten other natural strains. Reference strain Rm1021 was the strain with a completely sequenced genome, from which the whole genome microarray was based on (Krol et al. 2004). The second reference strain RmF909 was derived from strain Rm1021 but with a deletion of 575 ORFs located on the megaplasmid pSymB (genomic location 106724-735431, Charles et al. 1991). The two reference strains were used for positive and negative controls in our microarray hybridization experiments and for establishing threshold values for determining whether an ORF is present or absent among natural strains.
Project description:Emerging known and unknown pathogens create profound threats to public health. Platforms for rapid detection and characterization of microbial agents are critically needed to prevent and respond to disease outbreaks. Available detection technologies cannot provide broad functional information about known and novel organisms. As a step toward developing such a system, we have produced and tested a series of high-density functional gene arrays to detect elements of virulence and antibiotic resistance mechanisms. Our first generation array targets genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for gene family detection and discrimination. When tested with organisms at varying phylogenetic distances from the four target strains, the array detected orthologs for the majority of targeted gene families present in bacteria belonging to the same taxonomic family. In combination with whole-genome amplification, the array detects femtogram concentrations of purified DNA, either spiked in to an aerosol sample background, or in combinations from one or more of the four target organisms. This is the first report of a high density NimbleGen microarray system targeting microbial antibiotic resistance and virulence mechanisms. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples. Keywords: detection, pathogen, virulence mechanism