Project description:The widely used white light-emitting diodes (LED) deliver higher levels of blue light than do conventional domestic light sources. The high intensity of blue component is the main source of concern about the health risks of LED with respect to their light-toxicity to the retina. White LED light with higher correlated color temperature (CCT) is more likely to cause retinal injury in mice, significantly reducing the number of ONL nuclei, however apoptosis pathway may not be the only mechanism. We used the Affymetrix GeneChip (Mouse Genome 430 2.0) to describe the different influence on gene expression of mouse retina under white LED light with different CCT.
Project description:To investigate light-regulated miRNAs in the human retina we photostimulated retinal organoids and found 51 light-regulated miRNAs that are significantly up- or down-regulated.
Project description:It is a randomized controlled trial with tandem colonoscopy.Participants were randomized for use of either blue laser imaging or conventional White Light Colonoscopy on withdrawal method.comparison of detection and miss rates of BLI group Versus conventional White Light Colonoscopy.
Project description:Microarray analysis of murine retinal light damage reveals changes in iron regulatory, complement, and antioxidant genes in the neurosensory retina and isolated retinal pigment epithelium (RPE). With the advent of microarrays representing most of the transcriptome and techniques to obtain RNA from the isolated RPE monolayer, we have probed the response of the RPE and neurosensory retina (NSR) to light damage. Mice were exposed to 10,000 lux cool white fluorescent light for 18 hours and sacrificed 4 hours after photic injury. NSR and isolated RPE were collected, and RNA was isolated. DNA microarray hybridization was conducted as described in the Affymetrix GeneChip Expression Analysis Technical Manual. Microarray analysis was performed using probe intensity data derived from the Mouse Gene 1.0 ST Array. For the genes of interest, confirmation of gene expression was done using quantitative real-time PCR. Immunofluorescence assessed protein levels and localization.
Project description:The purpose of the study is to assess whether the use of I-scan during colonoscopy leads to an increased yield of adenomas in the colon among a population at increased risk for CRC.
Primary Outcome:
To estimate the mean number of adenomas per colonoscopy for both high definition white light colonoscopy and I-scan enhanced colonoscopy
Secondary Outcomes:
1. To estimate the recruitment rate
2. Number of adenomas detected in the right colon during the second look
Project description:Transcriptional profiling of wild-type and kdmA deletion mutant in response to white light exposure, against a wild-type dark-incubated reference
Project description:Interventions: narrow-band imagaing
white light
Primary outcome(s): Comparison of narrow-band imaging versus white light imaging for diminutive adenoma detection rate
Study Design: Parallel Randomized
Project description:The peroxisome proliferator-activated receptor c coactivator 1 (PGC-1) proteins are key regulators of cellular bioenergetics and are accordingly expressed in tissues with a high energetic demand. For example, PGC-1a and PGC-1b control organ function of brown adipose tissue, heart, brain, liver and skeletal muscle. Surprisingly, despite their prominent role in the control of mitochondrial biogenesis and oxidative metabolism, expression and function of the PGC-1 coactivators in the retina, an organ with one of the highest energy demands per tissue weight, are completely unknown. Moreover, the molecular mechanisms that coordinate energy production with repair processes in the damaged retina remain enigmatic. In the present study, we thus investigated the expression and function of the PGC-1 coactivators in the healthy and the damaged retina. We show that PGC-1a and PGC-1b are found at high levels in different structures of the mouse retina, most prominently in the photoreceptors. Furthermore, PGC-1a knockout mice suffer from a striking deterioration in retinal morphology and function upon detrimental light exposure. Gene expression studies revealed dysregulation of all major pathways involved in retinal damage and apoptosis, repair and renewal in the PGC-1a knockouts. The light-induced increase in apoptosis in vivo in the absence of PGC-1a was substantiated in vitro, where overexpression of PGC-1a evoked strong anti-apoptotic effects. Finally, we found that retinal levels of PGC-1 expression are reduced in different mouse models for retinitis pigmentosa. We demonstrate that PGC-1a is a central coordinator of energy production and, importantly, all of the major processes involved in retinal damage and subsequent repair. Together with the observed dysregulation of PGC-1a and PGC-1b in retinitis pigmentosa mouse models, these findings thus imply that PGC-1a might be an attractive target for therapeutic approaches aimed at retinal degeneration diseases.