Project description:We report the transcriptomes of 10 different chicken (Gallus gallus) cell/tissue types. The goal of this project was to determine similarities and differences between different cell/tissue types, with respect to protein coding genes, lncRNA, isoform counts, and differential gene expression. We provide raw data and bigWig files for UCSC visualization. The findings described here will be useful towards a complete annotation of chicken tissue and cellular transcriptomes.
Project description:Liver clock regulates transcription of hepatic genes in response to feeding. To explore the possibility that the microbiome influences this process, we measured the liver transcriptome in normal mice (Specific Pathogen Free or SPF mice) and compared it to the transcriptome in mice lacking microbiota (Germ Free or GF mice) at different time points over 24h. We used microarrays to detail the global programme of gene expression in liver of GF and SPF 10-12 weeks-old male C57Bl/6 male mice. There are 40 liver samples, each from an individual mouse. The samples are from germ free mice (GF) and specific pathogen free mice (SPF). Mice of both types were sacrificed at four time points: Zeitgeber Time 0, 6, 12, and 18. There are five replicates per condition.
Project description:Liver clock regulates transcription of hepatic genes in response to feeding. To explore the possibility that the microbiome influences this process, we measured the liver transcriptome in normal mice (Specific Pathogen Free or SPF mice) and compared it to the transcriptome in mice lacking microbiota (Germ Free or GF mice) at different time points over 24h. We used microarrays to detail the global programme of gene expression in liver of GF and SPF 10-12 weeks-old male C57Bl/6 male mice.
Project description:The small intestinal epithelial barrier inputs signals from the gut microbiota in order to balance physiological inflammation and tolerance, and to promote homeostasis. Understanding the dynamic relationship between microbes and intestinal epithelial cells has been a challenge given the cellular heterogeneity associated with the epithelium and the inherent difficulty of isolating and identifying individual cell types. Here, we used single-cell RNA sequencing of small intestinal epithelial cells from germ-free and specific pathogen-free mice to study microbe-epithelium crosstalk at the single cell resolution.