Project description:Ethyl Acetate fraction of Streptomyces sp. CBMAI 2042 was investigated for identifying cyclodepsipeptides using electrospray ionisation tandem mass spectrometry (ESI-MS/MS). Without prior isolation, the structural determination was achieved on the basis of mass fragmentation pattern and comparison with the previously established data. The ESI-MS of the fraction in the positive ion mode gave clusters of singly and doubly charged molecular ion peaks. The ESI-MS spectrum showed peaks for the presence of the cyclodepsipeptides Valinomycin, Montanastatin and at least 5 structural analogues never reported before.
Project description:Streptomyces sp. M7 has demonstrated ability to remove lindane from culture media and soils. In this study, we used MS-based label-free quantitative proteomic to understand lindane degradation and its metabolic context in Streptomyces sp. M7. We identified the proteins involved in the up-stream degradation pathway. Our results demonstrated that mineralization of lindane is feasible since proteins from an unusual down-stream degradation pathway were also identified. Degradative steps were supported by an active catabolism that supplied energy and reducing equivalents in the form of NADPH. This is the first study in which degradation steps of an organochlorine compound and metabolic context are elucidate in a biotechnological genus as Streptomyces. These results serve as basement to study other degradative actinobacteria and to improve the degradation processes of Streptomyces sp. M7.
Project description:This study aimed to investigate the variations in the protein composition of Streptomyces sp. PU10 when cultivated with either Impranil (polyestere-polyurethane) or glucose as the carbon source. We analyzed both the intracellular and extracellular protein fractions to gain insights into the intricate processes involving PU degradation, intermediate metabolic pathways in PU degradation, and the connection between primary and secondary metabolism within Streptomyces sp. PU10.
Project description:Actinomycete genomes contain a plethora of orphan gene clusters encoding unknown secondary metabolites, and representing a huge unexploited pool of chemical diversity. The explosive increase in genome sequencing and the massive advance of bioinformatic tools have revolutionized the rationale for natural product discovery from actinomycetes. In this context, we applied a genome mining approach to discover a group of unique catecholate-hydroxamate siderophores termed as qinichelins from Streptomyces sp. MBT76. Quantitative proteomics statistically correlated a gene cluster of interest (qch) to its unknown chemotype (qinichelin), after which structural elucidation of isolated qinichelin was assisted by bioinformatics analysis and verified by MS2 and NMR experiments. Strikingly, intertwined functional crosstalk among four separately located gene clusters was implicated in the biosynthesis of qinichelins.
Project description:Streptomyces sp. MB42 produces antimicrobial compound under the pressence of specific compounds. This experiment is to see which gene cluster upregulated during the treatment of target compound.