Project description:Comparison of chitosan-treated B. cereus ATCC 14579 cells with non-treated B. cereus ATCC 14579 cells. 2 chitosans with similar molecular weight (Mw) but different degrees of acetylation (Fa) were used: chitosan B (Mw: 28.4 kDa, Fa: 0.16) (samples 1-3) and chitosan A (Mw: 36.0 kDa, Fa: 0.01) (samples 4-6).
Project description:Fifty healthcare workers (HCW) who had received Mycobacterium-w (Mw) and at least one dose of ChAdOx1 nCoV-19 vaccine subsequently (Mw+ChAdOx1 group) were monitored for symptomatic COVID-19, during a major outbreak with the delta variant of SARS-CoV-2 (April-June, 2021) in India, along with 201 HCW receiving both doses of the vaccine without Mw (ChAdOx1 group). Bulk RNA-Seq analysis was carried out on 4 subjects enrolled from each group.
Project description:Kertinocyte cultures grown in 60 mm petri dishes were placed 186 mm from the solar simulator source (Solar-simulated ultraviolet radiation 1600W Xenon short arc lamp with an Oriel Air Mass 1 Direct Filter, (AM1:D:B; model 81074) and KG2 Short Pass Filter. irradiance 9.84 mW/cm² for UVA (98.3%), 0.174 mW/cm² for UVB (1.7%) and 10 mW/cm² (0.017 mW/cm² erythemally-weighted) for the total UVR irradiance) and received a dose of either 0, 10, 20 and 150 kJ/m2 of unweighted ultraviolet radiation and 0, 10 and 150 kJ/m2 of unweighted ultraviolet radiation with SPF 15 sunscreen filtration (Homosalate 3%, Octisalate 4%, Avobenzone 2%, Titanium dioxide 0.66%) (2 mg/cm2 sandwiched between two 5x5 inch quartz plates) and were temperature controlled at 37oC using a customized water-bath. Six and Twenty-four hours post-exposure cells were harvested and RNA was extracted and subjected to microarray analysis.
Project description:Comparison of chitosan-treated B. cereus ATCC 14579 cells with non-treated B. cereus ATCC 14579 cells. 2 chitosans with similar molecular weight (Mw) but different degrees of acetylation (Fa) were used: chitosan B (Mw: 28.4 kDa, Fa: 0.16) (samples 1-3) and chitosan A (Mw: 36.0 kDa, Fa: 0.01) (samples 4-6). One-condition design comparision of treated vs. non-treated control. 3 biological replicates, including a dye swap.
Project description:Pristine groundwater is a highly stable environment with microbes adapted to dark, oligotrophic conditions. Input events like heavy rainfalls can introduce excess particulate organic matter including surface-derived microbes into the groundwater, hereby creating a disturbance to the groundwater microbiome. Some of the translocated bacteria are not able to thrive in groundwater and will form necromass. Here, we investigated the effects of necromass addition to the microbial community in fractured bedrock groundwater, using groundwater mesocosms as model systems. We followed the uptake of 13C-labeled necromass by the bacterial and eukaryotic groundwater community quantitatively and over time by employing a combined protein and DNA stable isotope probing approach. Necromass was rapidly depleted in the mesocosms within four days, accompanied by a strong decrease of Shannon diversity and an increase of bacterial 16S rRNA gene copy numbers by one order of magnitude. Species of Flavobacterium, Massilia, Rheinheimera, Rhodoferax and Undibacterium dominated the microbial community within two days and were identified as key players in necromass degradation, based on a 13C incorporation of > 90% in their peptides. Their proteomes showed various uptake and transport related proteins, and many proteins involved in metabolizing amino acids. After four and eight days of incubation, autotrophic and mixotrophic groundwater species of Nitrosomonas, Limnohabitans, Paucibacter and Acidovorax increased in abundance, with a 13C incorporation between 0.5 and 23%. Our data point towards a very fast and exclusive uptake of labeled necromass by a few specialists followed by a concerted action of groundwater microorganisms, including autotrophs presumably fueled by released, reduced nitrogen and sulfur compounds generated during necromass degradation.
Project description:Whole transcriptome Differential Gene Expression (DGE) analysis was carried out on four biological replicates of both Mw (0.1 ml Mw administrated intradermally in each arm) and Control group at 6 months following exposure to Mycobacterium-w. Sequencing was done through Direct cDNA Sequencing (oxford nanopore technologies, Oxford, UK) using RNA isolated from Peripheral blood mononuclear cells (PBMC) by Trizol method. Native barcoding and adaptor ligation was done according to the manufacturer’s instructions. Ligated cDNA was loaded on the flow cell (R9.4.1) in MinION and were sequenced specifying 72 hours protocol. MinKNOW (v21.06.10, Microsoft Windows OS based) was used to generate FAST5 files. FAST5 files were base-called with CPU based Guppy basecaller (v.5.0.11) (ONT) to generate FASTQ files. DGE analysis was done using “pipeline-transcriptome-de” (https://github.com/nanoporetech/pipeline-transcriptome-de) pipeline. DGE analysis confirmed that upregulation of ANK pathway was evident at 6 months in the Mw group. Apart from upregulation of KLRC2 and B3GAT1 and downregulation of KLRC1, the key transcription factor in the ANK pathway, BCL11b, was persistently upregulated. Downregulation of EAT-2 and PLZF further corroborated the classic gene expression signature of ANK cells. Moreover, increased expression of AT-rich interaction domain 5B (ARID5B), as demonstrated in the Mw group plays an important role in enhanced metabolism in ANK cells as well as increased IFN-γ release and survival. DGE analysis also revealed an enhancement of ANK mediated ADCC pathway, with significant upregulation of CD247 along with downregulation of FCER1G, which is a typical signature of ANK-ADCC. Both CD247 and FCER1G are adapter molecules for FCGRIIIA (CD16) with CD247 possessing 3 ITAMs against one ITAM of FCER1G, increasing the ADCC several folds. It is possible that Mw induced augmentation of NK-ADCC might potentiate the efficacy of SARS-CoV2 vaccines as well.
Project description:A functional microarray targeting 24 genes involved in chlorinated solvent biodegradation pathways has been developed and used to monitor the gene diversity present in four trichloroethylene (TCE) contaminated sites under ERD (enhanced reductive dechlorination) treatment. The microarray format provided by NimbleGen and used in this study is 12x135K. 2 µg of labelled gDNA from 30 groundwater samples were hybridized on the microarrays.