Project description:Salmonella enterica subsp. enterica contains more than 2,600 serovars of which four are of major medical relevance for humans. While the typhoidal serovars (Typhi and Paratyphi A) are human-restricted and cause enteric fever, non-typhoidal Salmonella serovars (Typhimurium and Enteritidis) have a broad host range and predominantly cause gastroenteritis. In this study, we compared the core proteomes of Salmonella Typhi, Paratyphi A, Typhimurium and Enteritidis using contemporary proteomics. Five isolates, covering different geographical origins, and one reference strain per serovar were grown in vitro to the exponential phase. Protein levels of orthologous proteins between serovars were compared and subjected to gene ontology term enrichment and inferred regulatory interactions. Differential expression of the core proteomes of the typhoidal serovars appears mainly related to cell surface components and, for the non-typhoidal serovars, to pathogenicity. Our findings may guide future development of novel diagnostics and vaccines, and understanding of disease progression.
Project description:FabR ChIP-chip on Salmonella enterica subsp. enterica serovar Typhimurium SL1344 using anti-Myc antibody against strain with chromosomally 9Myc-tagged FabR (IP samples) and wildtype strain (mock IP samples)
Project description:Many non-typhoidal serovars of Salmonella such as Salmonella enterica serovar Typhimurium (S. Typhimurium) are the leading cause of food-borne gastroenteritis, resulting in millions of infections each year and sometimes death. Salmonella enterica serovar Typhimurium is the most common non-typhoidal Salmonella strain isolated from patients around the world and is used as a mouse model to study bacterial pathogenesis and host-microbe interactions. Furthermore, S. Typhimurium is an important pathogen in livestock animals including chickens and cattle. S. Typhimurium utilises a multitude of virulence factors to reach and invade host cells and for its intracellular survival. However, little is known about the mechanism of protein synthesis of these virulence factors at the codon level. Here, we performed RNA-seq and ribosome profiling. Ribosome profiling allows the global mapping of translating ribosomes on the transcriptome and therefore provides direct measure of protein synthesis.
Project description:We have performed microarray hybridization studies on forty clinical isolates from twelve common serovars within Salmonella enterica subspecies I (sspI) to identify the conserved gene pool present.
Project description:The purpose of this experiment was to identify intestinal epithelial responses to various strains of Salmonella enterica. Human intestinal organoids were infected with three serovars of Salmonella; Typhimurium, Enteritidis and Typhi, as well as type 3 secretion system -1 and -2 mutants in Typhimurium in order to identify host responses that were similar and unique to each serovar, and responses that were dependent on these secretion systems.
Project description:Salmonella enterica causes serious global burden of morbidity and mortality and is a major cause of infant bacteremia in sub Saharan Africa. Diseases caused by Salmonella are treatable with antibiotics but successful antibiotic treatment has become difficult due to antimicrobial resistance. An effective vaccine together with public health effort may therefore be a better strategy to control these infections. Protective immunity against Salmonella depends primarily on T cell-mediated immune responses and therefore identifying relevant T cell antigens is necessary for Salmonella vaccine development. Our laboratory has used an immunoproteomics approach to identify Chlamydia T cell antigens that exhibited significant protection against Chlamydia infection in mice. In this study, we infected murine bone marrow derived dendritic cells from C57BL/6 mice with Salmonella enterica strain SL1344 followed by isolation of MHC class I and II- molecules and elution of bound peptides. The sequences of the peptides were then identified using tandem mass spectrometry. We identified 87 MHC class II and 23 MHC class I Salmonella derived peptides. Four of 12 peptides stimulated IFN-? production by CD4 T cells from the spleens of mice with persistent Salmonella infection. These antigens will be useful for Salmonella immunobiology research and are potential Salmonella vaccine candidates.
Project description:We performed affinity purification coupled to quantitative mass spectrometry (AP-qMS) for proteins belonging to retrons of Salmonella enterica. We quantified the proteome of rcaT point mutants in Salmonella enterica. We quantified the proteome of phage P1vir in E. coli.
Project description:Salmonella enterica is an important foodborne pathogen that utilizes secreted effector proteins to manipulate host pathways to facilitate survival and dissemination. Different S. enterica serovars cause disease syndromes ranging from self-limited gastroenteritis to typhoid fever and vary in their repertoire of effectors. We leveraged this natural diversity to identify stm2585, here designated sarA (Salmonella anti-inflammatory response activator), as a Salmonella effector secreted primary by the SPI-2 type III secretion system. SarA is necessary and sufficient to induce STAT3 phosphorylation and IL-10 production, contributing to intracellular replication in vitro and bacterial load at systemic sites in mice. These results demonstrate that Salmonella has evolved effector mechanisms for regulating a host anti-inflammatory signaling pathway important in infection, autoimmunity, and cancer.