Project description:Photosynthetic microbes can produce the clean-burning fuel hydrogen using one of nature’s most plentiful resources, sunlight 1,2. Anoxygenic photosynthetic bacteria generate hydrogen and ammonia during a process known as biological nitrogen fixation. This reaction is catalyzed by the enzyme nitrogenase and consumes nitrogen gas, ATP and electrons 3. One bacterium, Rhodopseudomonas palustris, has a remarkable ability to obtain electrons from green plant-derived material 4,5 and to efficiently absorb both high and low intensity light energy to form ATP 6. Manipulating R. palustris or a similar organism to produce hydrogen commercially will require us to identify all its genes that contribute to hydrogen production and to understand how this process is regulated in cells. Here we describe mutant strains in which metabolism is redirected such that hydrogen production is uncoupled from nitrogen fixation. Our data indicate that three different single amino acid changes in the transcriptional regulator NifA each yielded strains that produced hydrogen even in the presence of the repressing nitrogen source ammonium and in the absence of specific inducing metabolic signals. We used the mutants to show that, in addition to nitrogenase genes, 18 genes outside of the nitrogenase gene cluster may contribute to hydrogen production. Some of these genes are likely involved in efficient ATP acquisition and in channeling electrons to nitrogenase for reduction of protons to molecular hydrogen. Our results demonstrate that photosynthetic bacteria can be genetically manipulated for sustained production of pure hydrogen in a variety of cultivation conditions in the absence of oxygen, nitrogen or other gases as long as light and an electron donor are supplied. Keywords: Comparison of transcriptome profiles
Project description:Photosynthetic microbes can produce the clean-burning fuel hydrogen using one of natureâ??s most plentiful resources, sunlight 1,2. Anoxygenic photosynthetic bacteria generate hydrogen and ammonia during a process known as biological nitrogen fixation. This reaction is catalyzed by the enzyme nitrogenase and consumes nitrogen gas, ATP and electrons 3. One bacterium, Rhodopseudomonas palustris, has a remarkable ability to obtain electrons from green plant-derived material 4,5 and to efficiently absorb both high and low intensity light energy to form ATP 6. Manipulating R. palustris or a similar organism to produce hydrogen commercially will require us to identify all its genes that contribute to hydrogen production and to understand how this process is regulated in cells. Here we describe mutant strains in which metabolism is redirected such that hydrogen production is uncoupled from nitrogen fixation. Our data indicate that three different single amino acid changes in the transcriptional regulator NifA each yielded strains that produced hydrogen even in the presence of the repressing nitrogen source ammonium and in the absence of specific inducing metabolic signals. We used the mutants to show that, in addition to nitrogenase genes, 18 genes outside of the nitrogenase gene cluster may contribute to hydrogen production. Some of these genes are likely involved in efficient ATP acquisition and in channeling electrons to nitrogenase for reduction of protons to molecular hydrogen. Our results demonstrate that photosynthetic bacteria can be genetically manipulated for sustained production of pure hydrogen in a variety of cultivation conditions in the absence of oxygen, nitrogen or other gases as long as light and an electron donor are supplied. Transcriptome profile of wild type (CGA009) growing photosynthetically in the presence of amonium an acetate was compare with that of 4 different mutants (CGA570, CGA571, CGA572 and CGA574). We did 2 biological replicates per strain.
Project description:Algal photo-bio hydrogen production, a promising method for producing clean and renewable fuel in the form of hydrogen gas, has been studied extensively over the last few decades. In this study, microarray analyses were used to obtain a global expression profile of mRNA abundance in the green alga Chlamydomonas reinhardtii at five different time points before the onset and during the course of sulphur depleted hydrogen production. The present work confirms previous findings on the impacts of sulphur deprivation but also provides new insights into photosynthesis, sulphur assimilation and carbon metabolism under sulphur starvation towards hydrogen production. For instance, while a general trend towards repression of transcripts encoding photosynthetic genes was observed, the abundance of Lhcbm9 (encoding a major light harvesting polypeptide) and LhcSR1 (encoding a chlorophyll binding protein) was strongly elevated throughout the experiment, suggesting remodeling of the photosystem II light harvesting complex as well as an important function of Lhcbm9 under sulphur starvation. This study presents the first global transcriptional analysis of C. reinhardtii during hydrogen production using five major time points at Peak Oxygen, Mid Oxygen, Zero Oxygen, Mid Hydrogen and Peak Hydrogen. Keywords: Time course, sulfur deprivation, hydrogen production.
Project description:One-step and two-step pathways are proposed to synthesize cytokinin. One-step pathway is mediated by LONELY GUY (LOG) proteins. However, the enzyme for two-step pathway has not been identified yet. Here, we show that a QTL GY3 boosts grain yield by more than 20% via manipulating two-step pathway. GY3 encodes a LOG protein that acts as a 5’-ribonucleotide phosphohydrolase by excessive consuming the cytokinin precursors, which contrasts with the activity of canonical LOG members as phosphoribohydrolases in a one-step pathway. The residue S41 of GY3 is crucial for the dephosphorylation of iPRMP. A solo-LTR insertion within the promoter of GY3 suppressed its expression and resulted in a higher content of active cytokinins in young panicles. Introgression of GY302428 increased grain yield per plot by 7.4% to 16.3% in all investigated indica backgrounds both under long-day and short-day conditions, which demonstrates the great value of GY302428 in indica rice production.