Project description:Significant enrichment of dCas9 chromatin occupancy at the targeted HS2 enhancer was observed in cells expressing LAMPS under the dark condition and after blue light illumination.
Project description:We found that mainstream cigarette smoking (4 cigarettes/day, 5 days/week for 2 weeks using Kentucky Research Cigarettes 3R4F) resulted in >20% decrease in the percentage of normal Paneth cell population in Atg16l1 T300A mice but showed minimal effect in wildtype littermate control mice, indicating that Atg16l1 T300A polymorphism confers sensitivity to cigarette smoking-induced Paneth cell damage. We performed cohousing experiments to test if Paneth cell phenotype is horizontally transmissible as is microbiota. Atg16l1 T300A and littermate controls that were exposed to cigarette smoking were used as microbiota donors, and these donor mice were exposed to smoking for 2 weeks prior to cohousing. Separate groups of Atg16l1 T300A and littermate controls that were not exposed to cigarette smoking were used as microbiota recipients. The microbiota recipients were co-housed with microbiota donors of the same genotype for 4 weeks, during this period the donors continued to be exposed to cigarette smoking. Cigarette smoking was performed using smoking chamber with the dosage and schedule as described above. At the end of the experiment, the fecal microbiota composition was analyzed by 16S rRNA sequencing.
Project description:Vaccine-enhanced disease (VED) occurs as a result of vaccination followed by infection with virulent Mycoplasma pneumoniae. To date, VED has prevented development of an efficacious vaccine against this significant human respiratory pathogen. Herein we report that vaccination with M. pneumoniae lipid-associated membrane proteins (LAMPs) induces lung lesions consistent with exacerbated disease following challenge, without reducing bacterial loads. Removal of lipid moieties from LAMPs prior to vaccination eliminates VED and reduces bacterial loads after infection. Collectively, these data indicate that lipid moieties of lipoproteins are the causative factors of M. pneumoniae VED.
Project description:The use of light-emitting diode (LED) lamps could be an alternative method to improve somatic embryogenesis, yielding more efficient somatic embryo development and maturation than the use of conventional fluorescent lamps. The aim of this work was to study the influence of light quality on the somatic embryo development and differential abundance of proteins during the maturation of papaya (Carica papaya) cv. ‘Golden’ embryogenic cultures, using LED lamps with different wavelengths. Of all the LED treatments, the white plus medium blue (WmB - 450/530 nm) light resulted in the best somatic embryo production after 28 days of maturation. The WmB and fluorescent treatments generated 82.4 and 47.6 cotyledonary stage somatic embryos, respectively. By a comparative shotgun proteomics analysis between WmB LED and fluorescent lamps treatments, a total of 28 up-regulated and 7 down-regulated proteins were identified. Among the proteins up-regulated in the cultures treated with WmB LED light compared with fluorescent light were the indole-3-acetic acid-amido synthetase (GH3), pyrophosphate-energized vacuolar membrane proton pump (H+-PPase), and actin-depolymerizing factor 2 (ADF2) proteins, which are involved in the regulation of auxin levels by auxin conjugation and transport. Additionally, proteins related to energetic supply, protein metabolism, cell wall remodeling, internal trafficking, and cell division were up-regulated, showing a significantly higher abundance in the embryogenic cultures incubated under WmB LED light than those incubated under fluorescent light.
Project description:To identify differential gene expression profiles of chicken tracheal epithelial cells (TECs) upon exposure to Mycoplasma gallisepticum virulent strain Rlow and avirulent strain Rhigh and corresponding lipid associated membrane proteins(LAMP) at 1.5 hours in vitro. Goal of this experiment was to identify relative comtribution of LAMPs in up-regulation of inflammatory gene compared to the live strains. Several genes were identified to be differentially regulated in all exposures, but the virulent strain up-regulated more number genes as well as at a higher extent. We identified 6 important inflammatory mediators and did confirmatory RT-qPCR analysis at 1.5, 6 and 24 hours in vitro as well as at 1.5 and 6 hours ex-vivo. RT-qPCR was also employed to identify expression of these 6 genes in presence of different signalling inhibitors and we were able to identify that Mycoplasma gallisepticum LAMPs up-regulate these inflammatory genes via TLR-2 in an NF-M-NM-:B dependent pathway. Primary chicken tracheal epithelial cells (TECs) were exposed to either 500 MOI of a virulent Mycoplasma gallisepticum strain Rlow or an avirulent strain Rhigh and the corresponding lipid associated membrane proteins (LAMPs) at 5M-BM-5g/mL for 1.5 hours. 4 biological replicates along with a dye swap technique totalling 8 replicates were utilized for all microarray experiments
Project description:We profiled transcriptome and accessible chromatin landscapes in intestinal epithelial cells (IECs) from mice reared in the presence or absence of microbiota. We show that regional differences in gene transcription along the intestinal tract were accompanied by major alterations in chromatin organization. Surprisingly, we discovered that microbiota modify host gene transcription in IECs without significantly impacting the accessible chromatin landscape. Instead, microbiota regulation of host gene transcription might be achieved by differential expression of specific TFs and enrichment of their binding sites in nucleosome depleted CRRs near target genes. Our results suggest that the chromatin landscape in IECs is pre-programmed by the host in a region-specific manner to permit responses to microbiota through binding of open CRRs by specific TFs. mRNA and accessible chromatin (DNase-seq) profiles from colonic and ileal IECs were compared between conventionally-raised (CR), germ-free (GF), and conventionalized (CV) C57BL/6 mice.
Project description:To identify differential gene expression profiles of chicken tracheal epithelial cells (TECs) upon exposure to Mycoplasma gallisepticum virulent strain Rlow and avirulent strain Rhigh and corresponding lipid associated membrane proteins(LAMP) at 1.5 hours in vitro. Goal of this experiment was to identify relative comtribution of LAMPs in up-regulation of inflammatory gene compared to the live strains. Several genes were identified to be differentially regulated in all exposures, but the virulent strain up-regulated more number genes as well as at a higher extent. We identified 6 important inflammatory mediators and did confirmatory RT-qPCR analysis at 1.5, 6 and 24 hours in vitro as well as at 1.5 and 6 hours ex-vivo. RT-qPCR was also employed to identify expression of these 6 genes in presence of different signalling inhibitors and we were able to identify that Mycoplasma gallisepticum LAMPs up-regulate these inflammatory genes via TLR-2 in an NF-κB dependent pathway.
Project description:We have previously demonstrated that the gut microbiota can play a role in the pathogenesis of conditions associated with exposure to environmental pollutants. It is well accepted that diets high in fermentable fibers such as inulin can beneficially modulate the gut microbiota and lessen the severity of pro-inflammatory diseases. Therefore, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with inulin would be protected from the pro-inflammatory toxic effects of PCB 126.