Project description:To investigate the proteomic profiles of paired subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) samples, as well as their correlations with clinical traits in severely obese patients, and to identify potential serum protein markers associated with tissue expression or metabolic states.
Project description:Using RNA isolated from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) samples obtained from control and class I, II and III obese patients undergoing inguinal hernia repair and laparoscopic cholecystectomy, we compared the gene expression profiles between SAT and VAT using microarrays and validated the findings by real-time quantitative PCR.
Project description:The aim of this study was to characterize expression profiles of visceral and subcutaneous adipose tissue in children. Adipose tissue samples were collected from children having elective surgery (n=71, [54 boys], 6.0 +- 4.3 years). Affymetrix microarrays (n=20) were performed to characterize the functional profile and identify genes of interest in adipose tissue. Visceral adipose tissue had an overrepresentation of Gene Ontology themes related to immune and inflammatory responses and subcutaneous adipose tissue had an overrepresentation of themes related to adipocyte growth and development. Likewise, qPCR performed in the whole cohort showed a 30-fold increase in haptoglobin (P < 0.005), 7-fold increase in IL-10 (P < 0.001), 8-fold decrease in VEGF (P < 0.01) and a 28-fold decrease in TBOX15 (P < 0.001) in visceral compared to subcutaneous adipose tissue.The inflammatory pattern in visceral adipose tissue may represent an early stage of the adverse effects of this depot, and combined with chronic obesity, may contribute to increased metabolic and cardiovascular risk. 20 human samples from pre-pubertal boys and girls were assessed for differences in expression between subcutaneous (n=15) and visceral fat (n=5), with 1 microarray per subject
Project description:The aim of this study was to characterize expression profiles of visceral and subcutaneous adipose tissue in children. Adipose tissue samples were collected from children having elective surgery (n=71, [54 boys], 6.0 +- 4.3 years). Affymetrix microarrays (n=20) were performed to characterize the functional profile and identify genes of interest in adipose tissue. Visceral adipose tissue had an overrepresentation of Gene Ontology themes related to immune and inflammatory responses and subcutaneous adipose tissue had an overrepresentation of themes related to adipocyte growth and development. Likewise, qPCR performed in the whole cohort showed a 30-fold increase in haptoglobin (P < 0.005), 7-fold increase in IL-10 (P < 0.001), 8-fold decrease in VEGF (P < 0.01) and a 28-fold decrease in TBOX15 (P < 0.001) in visceral compared to subcutaneous adipose tissue.The inflammatory pattern in visceral adipose tissue may represent an early stage of the adverse effects of this depot, and combined with chronic obesity, may contribute to increased metabolic and cardiovascular risk.
Project description:Using RNA isolated from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) samples obtained from control and class I, II and III obese patients undergoing inguinal hernia repair and laparoscopic cholecystectomy, we compared the gene expression profiles between SAT and VAT using microarrays and validated the findings by real-time quantitative PCR. Two-condition experiment, SAT vs. VAT tissue. Biological replicates: 8 SAT replicates, 8 VAT replicates.
Project description:To investigate the proteomic profiles of paired subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) samples, as well as their correlations with clinical traits in severely obese patients, and to identify potential serum protein markers associated with tissue expression or metabolic states.
Project description:Visceral adipose tissue samples were obtained from severely obese individuals that underwent bariatric surgery. The goal of this study was to identify tissue specific methylation QTLs. Whole-transcriptome subcutaneous adipose tissue methylation levels were determined in 71 individuals with a BMI >35 kg/m2. Bisulphite converted DNA from the 71 visceral adipose tissue samples were hybridised to the Illumina Infinium 450k Human Methylation Beadchip.
Project description:Subcutaneous adipose tissue and visceral adipose tissue samples were obtained from severely obese individuals that underwent bariatric surgery. The goal of this study was to compare genome-wide gene expression levels in the two tissue types from healthy and unhealthy severely obese individuals. Whole-transcriptome subcutaneous adipose tissue gene expression levels were determined in 73 individuals with a BMI >35 kg/m2. Whole-transcriptome visceral adipose tissue gene expression levels were determined in 69 individuals with a BMI >35 kg/m2. Modules of co-expressed genes likely to be functionally related were identfied and correlated with BMI, plasma levels of glucose, insulin, HbA1c, triglycerides, non-esterified fatty acids, ALAT, ASAT, C-reactive protein, and LDL- and HDL cholesterol.
Project description:Case story. A patient with massive infiltration of the visceral adipose tissue depot by BAT in a patient with a catecholamine secreting paraganglioma. BAT tissue was identified by protein expression of UCP1 (western blotting and immunostaining) The goal of the study is to identify patterns of gene expression in BAT containing visceral fat compared to the patient's own subcutanous fat which did not express BAT. For comparison a pool of mRNA isolated from visceral fat from obese subjects was used. Patient Case, Gene expression array from a biopsy from the patient's visceral fat and a biopsy from the subcutaneous fat compared to one array of mRNA from the visceral depot pooled from a group of obese subjects