Project description:Barrett's esophagus transcriptome was analysed and compared with Barrett's esophagus primary cell culture and esophageal adenocarcinoma. Keywords: SAGE analysis to compare tissues Barrett's esophagus biopsy was taken from 1 male metaplastic Barrett's esophagus patient. Barrett's esophagus primary cell culture was cultures from a biopsy taken from a Barrett's esophagus patient and cultured for about 4 to 5 weeks. Esophageal adenocarcinoma was taken from a patient known to have cancer and previously Barrett's esophagus
Project description:Barrett's esophagus transcriptome was analysed and compared with Barrett's esophagus primary cell culture and esophageal adenocarcinoma. Keywords: SAGE analysis to compare tissues
Project description:SAGE performed on biopsies of Barrett's esophagus, squamous esophagus and gastric cardia taken from a metaplastic Barrett's esophagus patient. Keywords: SAGE comparative analysis of gene expression profiles of Barrett's esophagus, normal squamous esophagus and gastric cardia tissue
Project description:SAGE performed on biopsies of Barrett's esophagus, squamous esophagus and gastric cardia taken from a metaplastic Barrett's esophagus patient. Keywords: SAGE
Project description:Dysplasia and early cancer are hard to detect in endoscopic biopsies and hence this study was carried out to evaluate the biomarker potential of DNA methylation to detect dyspasia and early cancer in Barrett's esophaghus patients. Bisulfite converted genomic DNA was hybridized onto Illumina 27k methylation arrays. 22 Barrett's esophagus (BE) and 2 Duodenum vs. 24 esophageal adenocarcinoma (EAC)
Project description:Barrett's esophagus is a metaplastic condition of the distal esophagus, characterized by the replacement of normal squamous epithelium by columnar epithelium. Patients with BE have an increased risk of developing esophageal adenocarcinoma. MicroRNAs have been implicated to be disease and tissue specific, however limited data of microRNA expression in the esophagus is available. Therefore we evaluated microRNA expression profiles of esophageal adenocarcinoma and compared these with Barrett's esophagus and normal squamous esophagus.
Project description:samples contain normal, Barrett and duodenum and adenocarcinoma BACKGROUND & AIMS: Barrett's esophagus is a precursor of esophageal adenocarcinoma. DNA microarrays that enable a genome-wide assessment of gene expression enhance the identification of specific genes as well as gene expression patterns that are expressed by Barrett's esophagus and adenocarcinoma compared with normal tissues. Barrett's esophagus length has also been identified as a risk factor for progression to adenocarcinoma, but whether there are intrinsic biological differences between short-segment and long-segment Barrett's esophagus can be explored with microarrays. METHODS: Gene expression profiles for endoscopically obtained biopsy specimens of Barrett's esophagus or esophageal adenocarcinoma and associated normal esophagus and duodenum were identified for 17 patients using DNA microarrays. Unsupervised and supervised approaches for data analysis defined similarities and differences between the tissues as well as correlations with clinical phenotypes. RESULTS: Each tissue displays a unique expression profile that distinguishes it from others. Barrett's esophagus and esophageal adenocarcinoma express a unique set of stromal genes that is distinct from normal tissues but similar to other cancers. Adenocarcinoma also showed lower and higher expression for many genes compared with Barrett's esophagus. No difference in gene expression was found between short-segment and long-segment Barrett's esophagus. CONCLUSIONS: The genome-wide assessment provided by current DNA microarrays reveals many candidate genes and patterns not previously identified. Stromal gene expression in Barrett's esophagus and adenocarcinoma is similar, indicating that these changes precede malignant transformation. A disease state experiment design type is where the state of some disease such as infection, pathology, syndrome, etc is studied. Keywords: disease_state_design
Project description:RNA-seq was performed on esophageal adenocarcinoma (EAC), Barrett's without dysplasia, Barrett's with low-grade dysplasia (LGD) and normal squamous esophagus tissue to find early alterations in the transcriptome level turning Barrett's dysplastic.
Project description:The goal of this experiment is to characterize the copy number changes in esophageal mucosa of patients with Barrett's esophagus (BE) who progress to esophageal dysplasia and adenocarcinoma (BE progressors), as compared to patients with BE who do not progress for at least two years after esophageal mucosal sampling (non-progressors with never dysplastic Barrett's esophagus - NvDBE - samples). We sampled esophageal mucosa from the following groups: 1) non-dysplastic intestinal metaplasia from 16 patients at least 1 year before progression to esophageal dysplasia or adenocarcinoma (PP-BE); 2) non-dysplastic intestinal metaplasia from 21 patients who did not progress to dysplasia or adenocarcinoma for at least 2 years of surveillance after the tested sample (NvDBE) 3) non-dysplastic intestinal metaplasia from 21 patients who had temporally concurrent but spatially separate intestinal metaplasia samples from the same procedure (C-BE). 4) 10 samples of esophageal dysplasia or adenocarcinoma from patients in group 1 and 3. Samples were obtained by endoscopic biopsy, endomucosal resection or surgical resection, processed for clinical purposes by routine histopathologic methods, including formalin fixation and paraffin embedding (FFPE). DNA was extracted from 5 micro tissue sections of FFPE blocks and DNA extracted using QIAamp DNA FFPE Tissue Kit (Qiagen, Germantown, MD). Samples were processed for identification of somatic copy number alterations using the OncoScan FFPE Assay or the OncoScan CNV Assay (Affymetrix, Santa Clara, CA) according to the manufacturer's protocols. After hybridization, the arrays were washed, stained using GeneChip Fluidics Station 450 (Affymetrix) and scanned using GeneChip Scanner 3000 7G (Affymetrix). The CEL files generated are deposited here.