Project description:The filamentous fungus Aspergillus terreus is known to produce both industrially and pharmaceutically important secondary metabolites. The objective of this study is to investigate the effect of exogenously added butyrolactone I (BI) on the submerged culture of A. terreus, especially on the possible regulation of the secondary metabolism on the transcriptional level. In order to elucidate the presumed regulative role of butyrolactone I, a large-scale microarray gene expression study was designed and conducted with an industrially utilised A. terreus strain MUCL38669. A. terreus MUCL38669 was cultured in secondary metabolism inducing submerged conditions for nine days, where butyrolactone I was added at the beginning of the growth phase (at 24 hours p.i.), in the middle of the growth phase (at 96 hours p.i.) or in the late growth phase (at 120 hours p.i.), in addition to the control culture where no exogenous butyrolactone I was added. To obtain comprehensive gene expression profiles over the whole culture time, samples were taken at six time points: 24 hours, 48 hours, 96 hours, 120 hours, 144 hours and 216 hours post inoculation.
Project description:We conducted a culture experiment by deeply submerging plants in swine wastewater in culturing Iris tectorum and co-culturing Iris tectorum and Dictyosphaerium sp., and found that the plants grew sub-normal in the plant-microalgae co-culture while the plants were dead after 21 days in the plant culture. We generated a comprehensive RNA-seq dataset from the submerged Iris tectorum leaves in both the plant culture and the plant-microalgae co-culture, aiming at providing information on the response mechanisms of the plants to waterlogging stress. Besides raw reads of the RNA-seq dataset, we used DEseq2 algorithms to detect the differently expressed genes in the plants between the different cultures. Additionally, we performed the plant disease resistance gene analysis for all the differentially expressed genes.
Project description:We performed transcriptomic profiling of cells derived from human induced pluripotent stem cells (iPSCs) using previously described distal lung directed differentiation protocol to generate alveolar type 2 cells (iAT2s). We used the SPC2-ST-B2 (“SPC2”) line containing a SFTPC-tdTomato knock in reporter. iAT2s were cultured as 3D spheres (3D), on Transwells in 2D submerged conditions (2D), or at ALI for a total of 10 days post passaging. iAT2s in ALI culture were exposed to cigarette smoke 12 hours prior to cell collection (Smoke) or air (ALI). On day 10, and at 12 hours post cigarette smoke exposure, cultures were dissociated to single cells and live cells were sorted on calcein blue on a Mo-Flo Astrios Cell Sorter. Capture and library preparation was performed using a 10X Chromium system. Libraries were sequenced using a NextSeq 500. We find that ALI culture promotes maturation of iAT2s compared to 3D, and that iAT2s mount an inflammatory and xenobiotic metabolism response to cigarette smoke exposure at ALI.
Project description:Filamentous fungi are confronted with changes and limitations of their carbon source during growth in their natural habitats and during industrial applications. To survive life-threatening starvation conditions, carbon from extra- and intracellular resources becomes mobilized to fuel fungal self-propagation. Key to understand the underlying cellular processes is the system-wide analysis of fungal starvation responses in a temporal and spatial resolution. The knowledge deduced is important for the development of optimized industrial production processes. This study describes the physiological, morphological and genome-wide transcriptional changes caused by prolonged carbon starvation during submerged batch cultivation of the filamentous fungus Aspergillus niger. Bioreactor cultivation supported highly reproducible growth conditions and monitoring of physiological parameters. Changes in hyphal growth and morphology were analyzed at distinct cultivation phases using automated image analysis. The Affymetrix GeneChip platform was used to establish genome-wide transcriptional profiles for three selected time points during prolonged carbon starvation. Compared to the exponential growth transcriptome, about 50% (7,292) of all genes displayed differential genes expression during at least one of the starvation time points. Enrichment analysis of Gene Ontology, Pfam domain and KEGG pathway annotations uncovered autophagy and asexual reproduction as major global transcriptional trends. Induced transcription of genes encoding hydrolytic enzymes was accompanied by increased secretion of hydrolases including chitinases, glucanases, proteases and phospholipases as identified by mass spectrometry. This study is the first system-wide analysis of the carbon starvation response in a filamentous fungus. Morphological, transcriptomic and secretomic analyses identified key events important for fungal survival and their chronology. The dataset obtained forms a comprehensive framework for further elucidation of the interrelation and interplay of the individual cellular events involved. for each post-exponential time point (Day1, Day3 and Day6 post-carbon depletion), biological duplicates were performed.
Project description:Filamentous fungi are important producers of enzymes and secondary metabolites in the biotech industry. A relatively new but highly promising fungus for industrial production is Thermothelomyces thermophilus, which is closely related to the model fungus Neurospora crassa. Nevertheless, to fully exploit the potential of T. thermophilus, a deeper understanding of its biology is necessary. A critical aspect of the filamentous fungal life cycle is the production of asexual spores (conidia), regulated by various stimuli, including nutrient availability. Under certain submerged fermentation conditions, several filamentous fungi produce conidia, which can be detrimental to product expression. In this study, we utilized RNA-seq to map transcriptomic changes during conidia production under submerged conditions in T. thermophilus. We found that the essential genes for conidiation in Aspergillus sp. and N. crassa, fluG and fluffy (fl), are not essential for conidiation in T. thermophilus. However, we identified a transcription factor, res1, whose deletion resulted in a complete loss of conidia production under fermentation conditions. This deletion also led to increased biomass production without increasing enzyme secretion. Notably, the deletion of res1 did not affect spore production on solid media. Differential gene expression analysis between the wild type and the res1 deletion mutant revealed that res1 regulates a broad range of cellular and metabolic processes, including MAPK and spore production pathways. Overexpression of res1 caused a severe growth defect and early conidia production compared to the wild type. Using ChIP-seq, we identified 35 potential target genes of res1, including known conidiation-related genes such as acon3, MAPK genes, and transcription factors like cpc1, as well as genes with unknown functions. Overall, we identified res1 to be obligatory for submerged conidia production and lay the foundation for further work on the T. thermophilus conidiation pathway and its applications.