Project description:Examination of soybean hypocotyls, G. max cv. Harosoy (Rps7), at 3, 6, 12, 24 and 48 hours after inoculation with P. sojae, race 2, isolate P6497 Patterns of Gene Expression Upon Infection of Soybean Plants by Phytophthora sojae. P. Moy, D. Qutob, B. P. Chapman, I. Atkinson, and M. Gijzen. Pages 1051-1062. Publication no. M-2004-0728-01R. Molecular Plant-Microbe Interactions, October 2004, Volume 17, Number 10. Keywords: time-course
Project description:Total RNA extracted from Phytophthora sojae (strain P6497) and infected soybean hypocotyls (cultivar Harosoy) provided template for synthesis of cDNA probes used in the microarray hybridizations. Infected plant hypocotyls were sampled 6 h, 12 h, 24 h, and 48 h after inoculation. Mycelia were grown on synthetic media (H&S) or vegetable juice media (V8). Zoospores were sampled at 0 h, 2 h and 6 h after inducing encystment and germination by agitation. We used microarrays to characterize gene expression patterns in the root rot pathogen Phytophthora sojae and its host Glycine max. Keywords: infection time course, zoospore germination time course, media formulation response
Project description:Total RNA extracted from Phytophthora sojae (strain P6497) and infected soybean hypocotyls (cultivar Harosoy) provided template for synthesis of cDNA probes used in the microarray hybridizations. Infected plant hypocotyls were sampled 6 h, 12 h, 24 h, and 48 h after inoculation. Mycelia were grown on synthetic media (H&S) or vegetable juice media (V8). Zoospores were sampled at 0 h, 2 h and 6 h after inducing encystment and germination by agitation. We used microarrays to characterize gene expression patterns in the root rot pathogen Phytophthora sojae and its host Glycine max. Keywords: infection time course, zoospore germination time course, media formulation response 28 samples from 9 treatments; 2 to 5 biological replicates per treatment.
Project description:Hypocotyls of soybean (Glycine max) seedlings of cultivar Williams were inoculated with mycelia of the oomycete pathogen Phytophthora sojae grown in liquid V8 medium or the hypocotyls were mock inoculated. After 12 hours, the sites of inoculation were excised from the hypocotyls and frozen for RNA extraction. Phytophthora sojae mycelia used for inoculation was saved for RNA extraction also
Project description:Examination of soybean hypocotyls cv Harosoy (Rps7) 48h after inoculation with P.sojae from race 1, race 2, race 5 and race 7 Keywords: other
Project description:To identify soybean genes and QTLs associated with quantitative resistance to infection by the oomycete pathogen Phytophthora sojae, we conducted a very large-scale microarray experiment using 2522 Affymetrix GeneChips. The experiment involved assaying a total of 298 soybean recombinant inbred lines together with internal checks.
Project description:Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is effectively controlled by Rps genes in soybean. Rps genes are race-specific, yet the mechanism of resistance, as well as susceptibility, remains largely unclear. Taking advantage of RNA-seq technology, we sequenced the transcriptomes of 10 near isogenic lines (NIL), each with a unique Rps gene, and the recurrent susceptible parent ‘Williams’. A total of 4330 differentially expressed genes (DEGs) were identified in ‘Williams’ while 2075 to 5499 DEGs were identified in each NIL. Comparisons between the NILs and ‘Williams’ allowed classification of two major groups of DEGs of interest: incompatible reaction associated genes (IRAGs) and compatible reaction associated genes (CRAGs). Hierarchical cluster analysis divided NILs into three clusters: Cluster I (Rps1-a), Cluster II (Rps1-b, 1-c and 1-k) and Cluster III (Rps3-a, 3-b, 3-c, 4, 5, and 6). Heatmap analysis, along with GO analysis suggested that the diversity of clusters for NILs were likely due to variation of the number of DEGs and the intensity of gene expression, rather than functional differentiation. Further analysis suggested that transcription factors might play pivotal role in determination of the cluster pattern, and that WRKY family were strongly associated with incompatible reactions. Analysis of IRAGs and CRAGs with putative functions suggested that the regulation of many phytohormone signaling pathways were associated with incompatible or compatible interactions with potential crosstalk between each other. As such, our study provides an in depth view of both incompatible and compatible interactions between soybean and P. sojae, which provides further insight into the mechanisms involved in host-pathogen interactions. 22 samples were sequenced, 11 inoculated with P. sojae, the other 11 were mock-inoculated
Project description:Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is effectively controlled by Rps genes in soybean. Rps genes are race-specific, yet the mechanism of resistance, as well as susceptibility, remains largely unclear. Taking advantage of RNA-seq technology, we sequenced the transcriptomes of 10 near isogenic lines (NIL), each with a unique Rps gene, and the recurrent susceptible parent ‘Williams’. A total of 4330 differentially expressed genes (DEGs) were identified in ‘Williams’ while 2075 to 5499 DEGs were identified in each NIL. Comparisons between the NILs and ‘Williams’ allowed classification of two major groups of DEGs of interest: incompatible reaction associated genes (IRAGs) and compatible reaction associated genes (CRAGs). Hierarchical cluster analysis divided NILs into three clusters: Cluster I (Rps1-a), Cluster II (Rps1-b, 1-c and 1-k) and Cluster III (Rps3-a, 3-b, 3-c, 4, 5, and 6). Heatmap analysis, along with GO analysis suggested that the diversity of clusters for NILs were likely due to variation of the number of DEGs and the intensity of gene expression, rather than functional differentiation. Further analysis suggested that transcription factors might play pivotal role in determination of the cluster pattern, and that WRKY family were strongly associated with incompatible reactions. Analysis of IRAGs and CRAGs with putative functions suggested that the regulation of many phytohormone signaling pathways were associated with incompatible or compatible interactions with potential crosstalk between each other. As such, our study provides an in depth view of both incompatible and compatible interactions between soybean and P. sojae, which provides further insight into the mechanisms involved in host-pathogen interactions.
Project description:Phytophthora root and stem rot caused by the oomycete pathogen Phytophthora sojae, is one of the most destructive diseases of soybean. Deploying soybean cultivars carrying race-specific resistance conferred by Rps genes is the most practicalapproach to managing this disease. Previously, two Rps genes, RpsUN1 and RpsUN2 conferring broad spectra of resistance to P. sojae isolates, were identified in a landrace PI 567139B and mapped to a 6.5-cM region on chromosome 3 and a 3.0-cM region on chromosome 16, corresponding to 840 kb and 600 kb of sequences, respectively,of the soybean reference genome. By analyzing ten and nine recombinants defined by genotypic and phenotypic screening of the 826 F2:3 families derived from two reciprocal crosses between the two parental lines of the mapping populations, RpsUN1 and RpsUN2 were further narrowed to a 151-kb region that harbors five genes including three NBS-LRR genes, and a 36-kb region that contains four genes including five NBS-LRR genes, respectively, according to the reference genome. Analysis of expressional changes of these nine genes before and after inoculation with the pathogen suggest that the counterparts of Glyma.03g034600 in the RpsUN1 region and the counterparts of Glyma.16g215200 and Glyma.16g214900 in the RpsUN2 region of PI 567139B may be associated with the resistance to P. sojae. It is also suggested that unequal recombination between different NBS-LRR genes in the mapped regions may have occurred, resulting in the formation of two recombinants with inconsistent genotypes and phenotypes detected by molecular markers within the fine-mapped regions. The haplotypes of genomic regions surrounding RpsUN1 and RpsUN2 in the entire soybean germplasm deposited in the US soybean germplasm collection were analyzed towards a better understanding of the origins of these two novel sources of resistance and screening of effective markers for marker-assisted selectionof these two resistance genes for soybean breeding.