Project description:We analyzed ~27nt small RNAs from Entamoeba histolytica trophozoites in basal conditions and after heat shock or oxidative stress E. histolytica trophozoites were treated with 1mM H2O2 for 1hr, or heat shocked at 42°C for 1hr and RNA was isolated and small RNA populations were compared to small RNA populations from untreated trophozoites
Project description:We examined the stress response in Entamoeba histolytica trophozoites by comparing untreated log-phase HM-1:IMSS trophozoites to those subjected to heat shock at 42C for 1 hour. Keywords: stress reponse We compared two arrays from normal trophozoites to two arrays from trophozoites subjected to heat shock.
Project description:Abstract: We have developed an Entamoeba histolytica genomic DNA microarray and used it to develop a transcriptional profile of 1,971 E. histolytica (HM-1:IMSS) genes. The arrays accurately detected message abundance and 31-47% of amebic genes were expressed under standard tissue culture conditions (levels detectable by Northern blot analysis or RT-PCR respectively). Genes expressed at high levels ( approximately 2% of total) included actin (8.m00351), and ribosomal genes (20.m00312). Moderately expressed genes ( approximately 14% of total) included cysteine proteinase (191.m00117), profilin (156.m00098), and an Argonaute family member (11.m00378). Genes with low-level expression ( approximately 15% of total) included Ariel1 (160.m00087). Genes with very low expression ( approximately 16% of total) and those not expressed ( approximately 52% of total) included encystation-specific genes such as Jacob cyst wall glycoprotein (33.m00261), chitin synthase (3.m00544), and chitinase (22.m00311). Transcriptional modulation could be detected using the arrays with 17% of genes upregulated at least two-fold in response to heat shock. These included heat shock proteins (119.m00119 and 279.m00091), cyst wall glycoprotein Jacob (33.m00261), and ubiquitin-associated proteins (16.m00343; 195.m00092). Using Caco-2 cells to model the host-parasite interaction, we verified that host cell killing was dependent on live ameba. However, surprisingly these events did not appear to induce major transcriptional changes in the parasites. This SuperSeries is composed of the SubSeries listed below.
Project description:We compared multiple strains of lab trophozoites to recent clinical isolates. Clinical isolates were grown in xenic media, and maintained many characteristics of the cyst stage of devlopment Keywords: Stage conversion
Project description:This SuperSeries is composed of the following subset Series: GSE2978: Entamoeba heat shock experiments GSE2979: Entamoeba plus Caco2 cells Abstract: We have developed an Entamoeba histolytica genomic DNA microarray and used it to develop a transcriptional profile of 1,971 E. histolytica (HM-1:IMSS) genes. The arrays accurately detected message abundance and 31-47% of amebic genes were expressed under standard tissue culture conditions (levels detectable by Northern blot analysis or RT-PCR respectively). Genes expressed at high levels ( approximately 2% of total) included actin (8.m00351), and ribosomal genes (20.m00312). Moderately expressed genes ( approximately 14% of total) included cysteine proteinase (191.m00117), profilin (156.m00098), and an Argonaute family member (11.m00378). Genes with low-level expression ( approximately 15% of total) included Ariel1 (160.m00087). Genes with very low expression ( approximately 16% of total) and those not expressed ( approximately 52% of total) included encystation-specific genes such as Jacob cyst wall glycoprotein (33.m00261), chitin synthase (3.m00544), and chitinase (22.m00311). Transcriptional modulation could be detected using the arrays with 17% of genes upregulated at least two-fold in response to heat shock. These included heat shock proteins (119.m00119 and 279.m00091), cyst wall glycoprotein Jacob (33.m00261), and ubiquitin-associated proteins (16.m00343; 195.m00092). Using Caco-2 cells to model the host-parasite interaction, we verified that host cell killing was dependent on live ameba. However, surprisingly these events did not appear to induce major transcriptional changes in the parasites. Refer to individual Series