Proteomics

Dataset Information

0

Tick host range adaptation: changes in protein profiles in Ixodes scapularis and Amblyomma americanum saliva during stimulation to feed on different hosts


ABSTRACT: Understanding the molecular basis of how the tick adapts to feed on different animal hosts is central to understanding tick and tick-borne disease (TBD) epidemiology. Tick adaptation to feed on vertebrate hosts is regulated by tick secretion of multiple tick saliva proteins (TSPs) and other molecules that regulate tick feeding. This study was initiated to determine if ticks such as Ixodes scapularis and Amblyomma americanum that are adapted to feed on multiple hosts utilized the same sets of proteins to accomplish feeding on all hosts. Our data suggest that ticks of the same species differentially express proteins when feeding on diffent hosts. SDS-PAGE and silver staining analysis revealed unique protein eletrophoretic profile in saliva of Ixodes scapularis and Amblyomma americanum that were stimulated to start feeding on different hosts: rabbits, humans, and dogs. LC-MS/MS sequencing and pairwise analysis of proteins in saliva of I. scapularis and A. americanum ticks that were non-stimulated and those that were stimulated to feed on rabbits, dogs, or humans identified TSPs that were unique to each treatment and those that were common. Overal, we identified a total of 276 and 340 non-redundant I. scapularis and A. americanum TSPs, which we have classified into 28 functional classes that include secreted conserved proteins (unknown functions), proteinase inhibitors, lipocalins, extracellular matrix/cell adhesion, heme/iron metabolism, signal transduction and immunity-related proteins being the most predominant in saliva of unfed ticks. With exception of Rhipicephalus microplus, anti-tick vaccine research relies on feeding lab animals. Data here suggest that lab animal data could result in prioritizing irrelevant targets as some tick genes are unique to ticks fed on lab animals. This study provides the platform that could be utilized to identify relevant target anti-tick vaccine antigens, and will facilitate early stage tick feeding research.

INSTRUMENT(S): Q Exactive

ORGANISM(S): Ixodes Scapularis (black-legged Tick) (deer Tick) Amblyomma Americanum

TISSUE(S): Saliva

SUBMITTER: Albert Mulenga  

LAB HEAD: Albert Mulenga

PROVIDER: PXD007712 | Pride | 2022-02-28

REPOSITORIES: Pride

Dataset's files

Source:
Action DRS
Amblyomma_1_non-stim_1.raw Raw
Amblyomma_1_non-stim_1.sepr Other
Amblyomma_1_non-stim_1.sqt Other
Amblyomma_1_non-stim_2.raw Raw
Amblyomma_1_non-stim_2.sepr Other
Items per page:
1 - 5 of 76
altmetric image

Publications

Tick-Host Range Adaptation: Changes in Protein Profiles in Unfed Adult <i>Ixodes scapularis</i> and <i>Amblyomma americanum</i> Saliva Stimulated to Feed on Different Hosts.

Tirloni Lucas L   Kim Tae K TK   Pinto Antônio F M AFM   Yates John R JR   da Silva Vaz Itabajara I   Mulenga Albert A  

Frontiers in cellular and infection microbiology 20171219


Understanding the molecular basis of how ticks adapt to feed on different animal hosts is central to understanding tick and tick-borne disease (TBD) epidemiology. There is evidence that ticks differentially express specific sets of genes when stimulated to start feeding. This study was initiated to investigate if ticks such as <i>Ixodes scapularis</i> and <i>Amblyomma americanum</i> that are adapted to feed on multiple hosts utilized the same sets of proteins to prepare for feeding. We exposed <  ...[more]

Similar Datasets

2012-12-21 | E-GEOD-39100 | biostudies-arrayexpress
2012-12-21 | GSE39100 | GEO
2015-12-11 | PXD003214 | Pride
2021-09-10 | PXD023940 | Pride
2021-06-07 | PXD018779 | Pride
2019-01-31 | GSE123407 | GEO
2023-03-11 | PXD038685 | Pride
2021-05-03 | PXD018964 | Pride
2016-03-19 | GSE79324 | GEO
2010-05-26 | E-GEOD-10222 | biostudies-arrayexpress