Proteotranscriptomic profiling of potential E6AP targets
Ontology highlight
ABSTRACT: Prostate cancer is a common cause of cancer-related death in men. E6AP, an E3 ubiquitin ligase and a transcription cofactor, is elevated in a subset of prostate cancer patients. Genetic manipulations of E6AP in prostate cancer cells expose a role of E6AP in promoting growth and survival of prostate cancer cells in vitro and in vivo. However, the effect of E6AP on prostate cancer cells is broad and it cannot be explained fully by previously identified tumour suppressors, promyelocytic leukemia protein and p27, that are regulated by E6AP. To explore additional players that are regulated downstream of E6AP, we combined a transcriptomic and proteomic approaches. We identified and quantified 16,130 transcripts and 7,209 proteins in castration resistant prostate cancer cell line, DU145. A total of 2,763 transcripts and 308 proteins were considered significantly altered upon knockdown of E6AP. Pathway analyses supported the known phenotypic effect of E6AP knockdown in prostate cancer cells and in parallel exposed novel potential links of E6AP with cancer metabolism, DNA damage repair and immune response. Changes in expression of the top candidates were confirmed using real-time polymerase chain reaction. Of these, clusterin, a stress-induced chaperone protein commonly deregulated in prostate cancer was pursued further. Knockdown of E6AP resulted in increased clusterin transcript and protein levels in vitro and in vivo. Concomitant knockdown of E6AP and clusterin supported the contribution of clusterin to the phenotype induced by E6AP. Overall, results from this study provide insight intothe potential biological pathways controlled by E6AP in prostate cancer cells and identifies clusterin as a novel target of E6AP.
INSTRUMENT(S): Q Exactive
ORGANISM(S): Homo Sapiens (human)
TISSUE(S): Cell Culture
SUBMITTER: Ralf Schittenhelm
LAB HEAD: Ygal Haupt
PROVIDER: PXD008132 | Pride | 2021-03-11
REPOSITORIES: Pride
ACCESS DATA