Asian citrus psyllid proteomics: Shotgun MS/MS analysis of impact of plant host on insect proteome + DIGE analysis of impact of plant host on insect proteome
Ontology highlight
ABSTRACT: The Asian citrus psyllid (Diaphorina citri) is a pest of citrus and the primary insect vector of the bacterial pathogen, ‘Candidatus Liberibacter asiaticus’ (CLas), which is associated with citrus greening disease. Variability in CLas titer in insects collected from infected plants has been attributed in part to the host plant from which the insects were collected. CLas accumulates to high titers in infected Citrus macrophylla, and in D. citri feeding on the infected plants of this species. In contrast, in the citrus relative Murraya paniculata, CLas titers remain low in infected plants and in D. citri exposed to infected plants. In this study, top-down and bottom-up proteomics methods were used to investigate the impact of these different host plants on D. citri protein expression. Difference in gel electrophoresis (DIGE) was used to identify protein spots on two-dimensional gels that were larger in one of three insect sample classes compared to the other two: D. citri continuously reared on C. macrophylla, D. citri reared continuously on M. paniculata, and D. citri transferred to M. paniculata for five days feeding after continuous rearing on C. macrophylla. Peptide mass spectrometry was used to identify and quantify proteins in target spots upregulated in each sample class. Shotgun proteomics was used to identify and quantify proteins from analysis of tryptic peptide samples prepared from whole insects from four sample classes: the reciprocal host switch condition (D. citri transferred to C. macrophylla for five days feeding after continuous rearing on M. paniculata) in addition to the three sample classes used in DIGE analysis. Integration of the results of both analyses reveals proteins identified by separate experimental workflows to be upregulated in insects adapted to each host plant, and in insects adapting to a novel host plant. A peptidoglycan-degrading protein involved in the immune response to bacterial pathogens was found to be upregulated in M. paniculata-reared D. citri. In the absence of CLas infection, host plant factors specific to M. paniculata may prime the antibacterial immune response in D. citri. Understanding the insect proteins involved in the adaptation of D. citri to host plants with variation in their susceptibility to CLas will inform the development of control strategies aimed at stopping the spread of citrus greening disease.
INSTRUMENT(S): LTQ Orbitrap XL, Orbitrap Fusion
ORGANISM(S): Diaphorina Citri (asian Citrus Psyllid)
TISSUE(S): Whole Body
SUBMITTER: Kevin Howe
LAB HEAD: Michelle Heck
PROVIDER: PXD011401 | Pride | 2022-04-27
REPOSITORIES: Pride
ACCESS DATA