Glyco-CPLL: an integrated method for in-depth and comprehensive N-glycoproteome profiling of human plasma
Ontology highlight
ABSTRACT: N-glycoproteins are involved in various biological processes. Certain distinctive glycoforms on specific glycoproteins enhance the specificity and/or sensitivity of cancer diagnosis. Therefore, the characterization of plasma N-glycoproteome is essential for new biomarker discovery. Absence of suitable analytical methods for in-depth and large-scale analyses of low-abundance plasma glycoproteins make it challenging to investigate the role of glycosylation. In this study, we developed an integrated method termed Glyco-CPLL, which integrates combinatorial peptide ligand libraries, high-pH reversed-phase pre-fractionation, hydrophilic interaction chromatography, trypsin and PNGase F digestion, shotgun proteomics, and various analysis software (MaxQuant and pGlyco2.0) for the low-abundance plasma glycoproteomic profiling. Then, we utilized the method to perform a comparative study and to explore papillary thyroid carcinoma-related proteins and glycosylations with reference to healthy controls. Finally, a large and comprehensive human plasma N-glycoproteomic database was established, containing 786 proteins, 369 N-glycoproteins, 862 glycosites, 171 glycan compositions, and 1644 unique intact N-glycopeptides. Additionally, several low-abundance plasma glycoproteins were identified, including SVEP1 (~0.54 ng/mL), F8 (~0.83 ng/mL), ADAMTS13 (~1.2 ng/mL). These results suggest that this method will be useful for analyzing plasma intact glycopeptides in future studies. Besides, the Glyco-CPLL method has a great potential to be translated to clinical applications.
INSTRUMENT(S): Orbitrap Fusion Lumos
ORGANISM(S): Homo Sapiens (human)
TISSUE(S): Blood Plasma
SUBMITTER: Yong Zhang
LAB HEAD: Yong Zhang
PROVIDER: PXD016428 | Pride | 2020-01-09
REPOSITORIES: pride
ACCESS DATA