Quantitative proteomic analysis after neuroprotective MyD88 inhibition in the retinal degeneration 10 mouse
Ontology highlight
ABSTRACT: Progressive dysfunction and death of photoreceptors occurs in blinding diseases such as age-related macular degeneration and retinitis pigmentosa. The MyD88 protein is a central adaptor molecule for innate immune system Toll-like receptors (TLR) and interleukin-1 receptor (IL-1R), which are active in retinal disease and induce cytokine secretion from inflammatory cells. We recently demonstrated that inhibiting MyD88 in mouse models of retinal degeneration led to increased rod photoreceptor survival, which was associated with altered cytokine expression and increased neuroprotective microglia. However, additional molecular changes associated with MyD88 inhibitor-mediated neuroprotection are not known. Quantitative proteomics using iTRAQ LC-MS/MS is a high-throughput method ideal for providing new information about the molecular mechanisms contributing to photoreceptor protection. In this study, we used isobaric tags for relative and absolute quantification (iTRAQ) labeling followed by liquid chromatography–tandem mass spectrometry (LC-MS/MS) for quantitative proteomic analysis on the rd10 mouse model of retinal degeneration to identify protein pathways changed by MyD88 inhibition. A total of 42 proteins were differentially expressed in retinas from mice treated with MyD88 inhibitor compared with control. Notably, increased expression of multiple crystallins and chaperones that respond to cellular stress and have anti-apoptotic properties were identified in the MyD88 inhibited mice. Additional differentially expressed biological processes included pyrophosphatase activity and peptide biosynthesis. These data suggest that inhibiting MyD88 may enhance chaperone-mediated tissue protective pathways. Therefore, this study provides new insight into molecular events that contribute to photoreceptor protection from modulating inflammation.
INSTRUMENT(S): Q Exactive
ORGANISM(S): Mus Musculus (mouse)
TISSUE(S): Retina
SUBMITTER: Sanjoy Bhattacharya
LAB HEAD: Sanjoy K. Bhattacharya
PROVIDER: PXD024501 | Pride | 2022-02-17
REPOSITORIES: Pride
ACCESS DATA