Proteomics

Dataset Information

0

Proteogenomic subtyping of chronic lymphocytic leukemia identifies subgroups with contrasting clinical outcome and distinct ex-vivo drug response profile – DIA Validation


ABSTRACT: We have performed a comprehensive proteomic analysis of clinical patient samples of chronic lymphocytic leukemia (CLL) alongside genome-, transcriptome- and ex-vivo drug response profiling. Trisomy 12 and IGHV mutation status had the strongest impact on the proteome and transcriptome; and SF3B1 mutations preferentially affected the proteome. Unsupervised clustering of the proteome data partitioned CLL patients into six protein based subgroups (PG) with contrasting clinical behavior. PG1-4 could be explained by the impact of trisomy 12 and IGHV mutation status on protein abundances and another subgroup (PG6), was enriched for TP53 mutations. In addition we uncovered a new subgroup (PG5) only detectable from the proteome, characterized by low expression of central B-cell receptor proteins, altered splicing, metabolic reprogramming and increased sensitivity to proteasomal inhibition. We further validated the existence of this subgroup by conducting DIA based proteomics of an additional 167 patients. This entry contains the DIA-data for 167 patients used to validate the subgroups identified using HiRIEF-LC-MS/MS (see separate accession: PXD017453) as well as DIA data for 36 of the original discovery cohort. https://www.ebi.ac.uk/pride/archive/projects/PXD028936

INSTRUMENT(S): Q Exactive HF

ORGANISM(S): Homo Sapiens (human)

TISSUE(S): B Cell

DISEASE(S): Chronic Lymphocytic Leukemia

SUBMITTER: Georgios Mermelekas  

LAB HEAD: Janne Lehtiö

PROVIDER: PXD024544 | Pride | 2022-10-19

REPOSITORIES: Pride

Dataset's files

Source:
Action DRS
CLL_DIA_GMMVRJ_Search_Output.txt Txt
GMMVRJ_DIA_20200611_CLL01.raw Raw
GMMVRJ_DIA_20200611_CLL02.raw Raw
GMMVRJ_DIA_20200611_CLL03.raw Raw
GMMVRJ_DIA_20200611_CLL04.raw Raw
Items per page:
1 - 5 of 216
altmetric image

Publications

Proteogenomics refines the molecular classification of chronic lymphocytic leukemia.

Herbst Sophie A SA   Vesterlund Mattias M   Helmboldt Alexander J AJ   Jafari Rozbeh R   Siavelis Ioannis I   Stahl Matthias M   Schitter Eva C EC   Liebers Nora N   Brinkmann Berit J BJ   Czernilofsky Felix F   Roider Tobias T   Bruch Peter-Martin PM   Iskar Murat M   Kittai Adam A   Huang Ying Y   Lu Junyan J   Richter Sarah S   Mermelekas Georgios G   Umer Husen Muhammad HM   Knoll Mareike M   Kolb Carolin C   Lenze Angela A   Cao Xiaofang X   Österholm Cecilia C   Wahnschaffe Linus L   Herling Carmen C   Scheinost Sebastian S   Ganzinger Matthias M   Mansouri Larry L   Kriegsmann Katharina K   Kriegsmann Mark M   Anders Simon S   Zapatka Marc M   Del Poeta Giovanni G   Zucchetto Antonella A   Bomben Riccardo R   Gattei Valter V   Dreger Peter P   Woyach Jennifer J   Herling Marco M   Müller-Tidow Carsten C   Rosenquist Richard R   Stilgenbauer Stephan S   Zenz Thorsten T   Huber Wolfgang W   Tausch Eugen E   Lehtiö Janne J   Dietrich Sascha S  

Nature communications 20221020 1


Cancer heterogeneity at the proteome level may explain differences in therapy response and prognosis beyond the currently established genomic and transcriptomic-based diagnostics. The relevance of proteomics for disease classifications remains to be established in clinically heterogeneous cancer entities such as chronic lymphocytic leukemia (CLL). Here, we characterize the proteome and transcriptome alongside genetic and ex-vivo drug response profiling in a clinically annotated CLL discovery coh  ...[more]

Similar Datasets

2024-06-21 | PXD017453 | Pride
2022-10-17 | PXD028936 | Pride
2021-09-27 | PXD022216 | Pride
2021-09-24 | PXD022198 | Pride
2013-08-30 | E-GEOD-40570 | biostudies-arrayexpress
| EGAS00001006206 | EGA
2013-04-11 | E-GEOD-45937 | biostudies-arrayexpress
2014-03-01 | E-MTAB-1454 | biostudies-arrayexpress
2013-08-30 | E-GEOD-40533 | biostudies-arrayexpress
2014-02-13 | E-GEOD-38483 | biostudies-arrayexpress