Glomerular proteomic profiling of kidney biopsies with hypertensive nephropathy reveals a signature of disease progression
Ontology highlight
ABSTRACT: Background and Objective: Hypertensive nephropathy (HN) requires a kidney biopsy as gold-standard for its diagnosis but histological findings are not entirely specific and lack specific prognostic markers. We aimed at defining prognostic candidate markers based on glomerular protein signatures. Method: We included adult patients (n=17) with an eGFR >30 ml/min/1.73m2 and proteinuria <3g/d from the Norwegian Kidney Biopsy Registry: stable patients (n=9) and subjects with HN progression (n=8) leading to end-stage renal disease (ESRD) within 20 years of follow-up. Glomerular cross-sections were microdissected from archival kidney biopsy sections and processed for protein extraction. Proteomic analyses were performed using Q-exactive HF mass spectrometer and relative glomerular protein abundance were compared between progressive vs non-progressive patients. Results: Amongst 1870 quality filtered proteins, we identified 58 proteins with an absolute fold change (FC)>1.5, p<0.05, including 17 proteins with absolute FC >2, indicative of HN progression (highest FC: Cadherin 16 and UDP-glucuronosyl-transferase 2B7). Hierarchical cluster and principal component analysis (PCA) with the 17 proteins showed clear separation of samples into HN progressors and non-progressors. Supervised classifier analysis (K nearest neighbour) identified a set of five proteins which classified 16/17 samples correctly. Applying Geneset Enrichment Analysis (GSEA), in general metabolic pathways were enriched in progressors, and structural cell pathways enriched in non-progressors. Pathway analysis identified Epithelial Adherens Junction Signaling as the most affected canonical pathway. The signature of HN progression is different from the respective signature of IgA progression. Conclusion: Glomerular proteomic profiling can be used to discriminate progressors from non-progressors in HN.
INSTRUMENT(S): Q Exactive HF
ORGANISM(S): Homo Sapiens (human)
TISSUE(S): Kidney, Renal Glomerulus
SUBMITTER: Kenneth Finne
LAB HEAD: Hans Peter Marti
PROVIDER: PXD026709 | Pride | 2023-05-23
REPOSITORIES: Pride
ACCESS DATA