Single locus phosphoproteomics reveals phosphorylation of RPA-1 is required for generation of single-strand DNA following a break at a subtelomeric locus
Ontology highlight
ABSTRACT: Damage to the genetic material of the cell poses a universal threat to all forms of life. Central to the DNA damage response (DDR) is a phosphorylation signalling cascade that leads to the co-ordination of the cellular response to a DNA break. Identifying the proteins that are phosphorylated is crucial to understanding the mechanisms underlying this DDR. We have used SILAC-based quantitative phosphoproteomics to profile changes in phosphorylation site abundance following a single double strand break (DSB) at a chromosome internal locus and the subtelomeric bloodstream form expression site in Trypanosoma brucei. We report >6500 phosphorylation sites, including a core set of 211 DSB responsive phosphorylation sites. Along with phosphorylation of canonical DNA damage factors, we find that there is a striking distinction between the proteins phosphorylated in response to a chromosome internal DSB and one at the active BES and describe a single phosphorylation event on Replication factor A (RPA) 1 that is required for efficient resection at a bloodstream form expression site
INSTRUMENT(S): Q Exactive HF
ORGANISM(S): Trypanosoma Brucei
SUBMITTER: MARIETTE MATONDO
LAB HEAD: Lucy Glover
PROVIDER: PXD034455 | Pride | 2024-09-04
REPOSITORIES: pride
ACCESS DATA