Project description:The complete genome sequence of Cucumber mosaic virus strain K was determined by deep RNA sequencing. The tripartite genome consists of a 3,382-nucleotide (nt) RNA1, a 3,050-nt RNA2, and a 2,218-nt RNA3 segment. Phylogenetic analysis placed RNA1 and RNA2 in subgroup IB. However, RNA3 grouped with subgroup IA isolates, indicating a likely recombination event.
Project description:Cucumber mosaic virus (CMV) has a wide host range causing severe damage in many important agricultural and ornamental crops. Earlier reports showed the prevalence of CMV subgroup I isolates in India. However, some recent reports point towards increasing incidence of subgroup II isolates in the country. The complete genome of a CMV isolate causing severe mosaic in cucumber was characterized and its phylogenetic analysis with other 21 CMV isolates reported worldwide clustered it with subgroup II strains. The genome comprised of RNA 1 (3,379 nucleotides), RNA 2 (3,038 nucleotides) and RNA 3 (2,206 nucleotides). The isolate showed highest homology with subgroup II isolates: 95.1-98.7, 87.7-98.0, and 85.4-97.1 % within RNA1, RNA2, and RNA3, respectively. RNA1 and RNA2 were closely related to the Japanese isolate while RNA3 clustered with an American isolate. Host range studies revealed that isolate showed severe mosaic symptoms on Nicotiana spp. and Cucumis spp. The isolate induced leaf deformation and mild filiform type symptoms in tomato. To best of our knowledge this is the first report of complete genome of CMV subgroup II isolate from India.
Project description:Taxonomic relationshipsCucumber mosaic virus (CMV) is the type species of the genus Cucumovirus in the family Bromoviridae, which also encompasses the Peanut stunt virus (PSV) and the Tomato aspermy virus (TAV). Nucleotide sequence similarity among these three cucumoviruses is 60%-65%. CMV strains are divided into three subgroups, IA, IB and II, based on the sequence of the 5' untranslated region of the genomic RNA 3. Overall nucleotide sequence similarity among CMV strains is approximately 70%-98%. GEOGRAPHICAL DISTRIBUTION, HOST RANGE AND SYMPTOMATOLOGY: CMV is distributed worldwide, primarily in temperate to tropical climate zones. CMV infects more than 1200 species of 100 plant families, including monocot and dicot plants. Symptoms caused by CMV infection vary with the host species and/or CMV strain, and include mosaic, stunt, chlorosis, dwarfing, leaf malformation and systemic necrosis. CMV disease is spread primarily by aphid transmission in a nonpersistent manner.Physical propertiesIn tobacco sap, the thermal inactivation point of the viral infectivity is approximately 70 °C (10 min), the dilution end-point is approximately 10(-4) and viral infectivity is lost after a few days of exposure to 20 °C. Viral infectivity can be retained in freeze-dried tissues and in the form of virions purified using 5 mm sodium borate, 0.5 mm ethylenediaminetetraacetic acid and 50% glycerol (pH 9.0) at -20 °C. CMV particles are isometric, approximately 28-30 nm in diameter and are composed of 180 capsid subunits arranged in pentamer-hexamer clusters with T= 3 symmetry. The sedimentation coefficient (s(20) ,(w) ) is c. 98 S and the particle weight is (5.8-6.7) × 10(6) Da. The virions contain 18% RNA. The RNA-protein interactions that stabilize the CMV virions are readily disrupted by sodium dodecylsulphate or neutral chloride salts. GENOMIC PROPERTIES: The genomic RNAs are single-stranded messenger sense RNAs with 5' cap and 3' tRNA-like structures containing at least five open reading frames. The viral RNA consists of three genomic RNAs, RNA 1 (c. 3.3 kb), RNA 2 (c. 3.0 kb) and RNA 3 (c. 2.2 kb), and two subgenomic RNAs, RNA 4 (c. 1.0 kb) and RNA 4A (c. 0.7 kb). The 3' untranslated regions are conserved across all viral RNAs. CMV is often accompanied by satellite, noncoding, small, linear RNA that is nonhomologous to the helper CMV.
Project description:Banana (Musa spp.) is one of the world's most important staple and cash crops. Despite accumulating genetic and transcriptomic data, low transformation efficiency in agronomically important Musa spp. render translational researches in banana difficult by using conventional knockout approaches. To develop tools for translational research in bananas, we developed a virus induced-gene silencing (VIGS) system based on a banana-infecting cucumber mosaic virus (CMV) isolate, CMV 20. CMV 20 genomic RNA 1, 2, and 3, were separately cloned in Agrobacterium pJL89 binary vectors, and a cloning site was introduced on RNA 2 immediately after the 2a open reading frame to insert the gene targeted for silencing. An efficient Agrobacterium inoculation method was developed for banana, which enabled the CMV 20 VIGS vector infection rate to reach 95% in our experiments. CMV 20-based silencing of Musa acuminata cv. Cavendish (AAA group) glutamate 1-semialdehyde aminotransferase (MaGSA) produced a typical chlorotic phenotype and silencing of M. acuminata phytoene desaturase (MaPDS) produced a photobleachnig phenotype. We show this approach efficiently reduced GSA and PDS transcripts to 10% and 18% of the control, respectively. The high infection rate and extended silencing of this VIGS system will provide an invaluable tool to accelerate functional genomic studies in banana.
Project description:Cucumber green mottle mosaic virus (CGMMV), as a typical seed-borne virus, causes costly and devastating diseases in the vegetable trade worldwide. Genetic sources for resistance to CGMMV in cucurbits are limited, and environmentally safe approaches for curbing the accumulation and spread of seed-transmitted viruses and cultivating completely resistant plants are needed. Here, we describe the design and application of RNA interference-based technologies, containing artificial microRNA (amiRNA) and synthetic trans-acting small interfering RNA (syn-tasiRNA), against conserved regions of different strains of the CGMMV genome. We used a rapid transient sensor system to identify effective anti-CGMMV amiRNAs. A virus seed transmission assay was developed, showing that the externally added polycistronic amiRNA and syn-tasiRNA can successfully block the accumulation of CGMMV in cucumber, but different virulent strains exhibited distinct influences on the expression of amiRNA due to the activity of the RNA-silencing suppressor. We also established stable transgenic cucumber plants expressing polycistronic amiRNA, which conferred disease resistance against CGMMV, and no sequence mutation was observed in CGMMV. This study demonstrates that RNA interference-based technologies can effectively prevent the occurrence and accumulation of CGMMV. The results provide a basis to establish and fine-tune approaches to prevent and treat seed-based transmission viral infections.
Project description:RNA silencing has an important role mediating sequence-specific virus resistance. Here, we analyzed in detail the interference of Cucumber Mosaic Virus (CMV) with the RNA silencing machinery of Arabidopsis thaliana. We detected that CMV infection induced the production of viral small interfering RNAs (vsiRNAs) that account for a significant part of the sRNome affecting the levels of other sRNA classes. Furthermore, we analyzed the incorporation of vsiRNAs into the main ARGONAUTE (AGO) proteins with a described antiviral role and the viral RNA silencing suppressor (VRS) 2b, by combining protein immunoprecipitation with sRNA high-throughput sequencing. vsiRNAs accumulated to high levels in AGO2, followed by AGO1, AGO5 and AGO7. Interestingly, vsiRNAs represented a significant percentage of AGO-loaded sRNAs and displaced other endogenous sRNAs. As a countermeasure, the VSR 2b loaded vsiRNAs and mRNA-derived siRNAs, which affected the expression of the genes they derived from. Additionally, we analyzed how vsiRNAs incorporated into the endogenous RNA silencing pathways by exploring their target mRNAs using parallel analysis of RNA end (PARE) sequencing. This strategy allowed us to identify 61 genes with degradome data supporting their vsiRNA-mediated cleavage. This work exemplifies the complex relationship of RNA viruses with the endogenous RNA silencing machinery and the multiple aspects of virus resistance and virulence that this interaction induces.
Project description:The commercial yield of cucurbit crops infected with Cucumber mosaic virus (CMV) severely decreases. Chemical treatments against CMV are not effective; therefore, genetic resistance is considered the primary line of defense. Here, we studied resistance to CMV in cucumber inbred line '02245' using a recombinant inbred line (RIL) population generated from a cross between '65G' and '02245' as susceptible and resistant parents, respectively. Genetic analysis revealed that CMV resistance in cucumber is quantitatively inherited. Analysis of the RIL population revealed that a quantitative trait locus (QTL) was found on chromosome 6; named cmv6.1, this QTL was delimited by SSR9-56 and SSR11-177 and explained 31.7% of the phenotypic variation in 2016 and 28.2% in 2017. The marker SSR11-1, which is close to the locus, was tested on 78 different cucumber accessions and found to have an accuracy of 94% in resistant and moderately resistant lines but only 67% in susceptible lines. The mapped QTL was delimited within a region of 1,624.0 kb, and nine genes related to disease resistance were identified. Cloning and alignment of the genomic sequences of these nine genes between '65G' and '02245' revealed that Csa6M133680 had four single-base substitutions within the coding sequences (CDSs) and two single-base substitutions in its 3'-untranslated region, and the other eight genes showed 100% nucleotide sequence identity in their exons. Expression pattern analyses of Csa6M133680 in '65G' and '02245' revealed that the expression levels of Csa6M133680 significantly differed between '65G' and '02245' at 80 h after inoculation with CMV and that the expression in '02245' was 4.4 times greater than that in '65G'. The above results provide insights into the fine mapping and marker-assisted selection in cucumber breeding for CMV resistance.
Project description:We constructed two independent small RNA libraries from leaves of mock and Cucumber mosaic virus (CMV) infected tomatoes, respectively, and sequenced with a high-throughput Illumina Solexa system. Based on sequence analysis and hairpin structure prediction, a total of 50 known miRNAs (32 families) and 568 potentially candidate miRNAs (PC-miRNAs) were firstly identified in tomato, with 12 known miRNAs and 154 PC-miRNAs supported by both the 3p and 5p strands. Comparative analysis revealed 79 miRNAs (including 15 novel tomato miRNAs) and 40 PC-miRNAs were differentially expressed between the two libraries. Among these virus responsive miRNAs, expression patters of some novel tomato miRNAs and PC-miRNAs in mock and in CMV-Fny infected tomatoes were further validated by qRT-PCR. Moreover, we revealed 563 potential targets for 66 tomato miRNAs by the recently developed degradome sequencing approach, including 124 targets for 7 new tomato miRNAs and 97 targets for 24 PC-miRNAs. Target annotation for the newly identified miRNA and PC-miRNAs indicated that they were involved in multiple biological processes, including transcriptional regulation and virus resistance. Gene ontology analysis of these target transcripts demonstrated that stress response- and photosynthesis-related genes were most affected in CMV-Fny infected tomatoes.