Project description:The ancestral sarbecovirus giving rise to SARS-CoV-2 is posited to have originated in bats. While SARS-CoV-2 causes asymptomatic to severe respiratory disease in humans, little is known about the biology, virus tropism, and immunity of SARS-CoV-2-like sarbecoviruses in bats. SARS-CoV-2 has been shown to infect multiple mammalian species, including various rodent species, non-human primates, and Egyptian fruit bats. Here, we investigate the Jamaican fruit bat (Artibeus jamaicensis) as a possible model species to study reservoir responses. SARS-CoV-2 can utilize Jamaican fruit bat ACE2 spike for entry in vitro. However, we find that SARS-CoV-2 Delta does not efficiently replicate in Jamaican fruit bats in vivo. We observe infectious virus in the lungs of only one animal on day 1 post inoculation and find no evidence for shedding or seroconversion. This is possibly due to host factors restricting virus egress after aborted replication. Furthermore, we observe no significant immune gene expression changes in the respiratory tract but do observe changes in the intestinal metabolome after inoculation. This suggests that, despite its broad host-range, SARS-CoV-2 is unable to infect all bat species and Jamaican fruit bats are not an appropriate model to study SARS-CoV-2 reservoir infection.
Project description:Jamaican fruit bats (Artibeus jamaicensis) naturally harbor a wide range of viruses of human relevance. These infections are typically mild in bats, suggesting unique features of their immune system. To better understand the immune response to viral infections in bats, we infected Jamaican fruit bats with the bat-derived influenza A virus H18N11. Using comparative single-cell RNA sequencing, we generated a single-cell atlas of the Jamaican fruit bat intestine and mesentery, the target organs of infection. Gene expression profiling showed that H18N11 infection resulted in a moderate induction of interferon-stimulated genes and transcriptional activation of immune cells. H18N11 infection was prominent in various leukocytes, including macrophages, B cells, and NK/T cells. Confirming these findings, human leukocytes, particularly macrophages, were also susceptible to H18N11, highlighting the zoonotic potential of this virus. Our study provides insight into the virus-host relationship and thus serves as a fundamental resource for further characterization of bat immunology.
Project description:Bats are natural reservoirs for a large range of emerging viruses that cause lethal diseases in humans and domestic animals, but remain asymptomatic in bats. Understanding the host-pathogen interactions relies on the availability of relevant models including susceptible cells, derived from viral target tissues. To obtain bat cell types pertinent for the study of viral infection, we applied somatic reprogramming approach to Pteropus primary cells as initial substrates. Using the novel combination of three transcription factors: ESRRB, CDX2 and c-MYC, we generated reprogrammed cells exhibiting stem cells features.
Project description:Bats harbour various viruses without severe symptoms and act as natural reservoirs. This tolerance of bats toward viral infections is assumed to be originated from the uniqueness of their immune system. However, how the innate immune response varies between primates and bats remains unclear. To illuminate differences in innate immune responses among animal species, we performed a comparative single-cell RNA-sequencing analysis on peripheral blood mononuclear cells (PBMCs) from four species including Egyptian fruit bats inoculated with various infectious stimuli.
Project description:Bats can harbor many pathogens without showing disease. However, the mechanisms by which bats resolve these infections or limit pathology remain unclear. To illuminate the bat immune response to coronaviruses, viruses with high public health significance, we will use serum proteomics to assess broad differences in immune proteins of uninfected and infected vampire bats (Desmodus rotundus). In contrast to global profiling techniques of blood such as transcriptomics, proteomics provides a unique perspective into immunology, as the serum proteome includes proteins from not only blood but also those secreted from proximal tissues. Here, we expand our recent work on the serum proteome of wild vampire bats (Desmodus rotundus) to better understand CoV pathogenesis. Across 19 bats sampled in 2019 in northern Belize with available sera, we detected CoVs in oral or rectal swabs from four individuals. We used data independent acquisition-based mass spectrometry to profile and compare the undepleted serum proteome of these 19 bats. These results will provide much needed insight into changes in the bat serum proteome in response to coronavirus infection.
Project description:Bats are the most important natural reservoirs for a variety of emerging viruses that cause several illnesses in humans and other mammals. Increased viral shedding by bats is thought to be linked to an increased ability of many bat species to tolerate viral infection. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, is thought to have originated in bats, since viruses with high sequence similarity have been detected in bat feces. However, there is no robust in vitro model for assessing the SARS-CoV-2 infection in the bat GI tract. Here, we established gastrointestinal organoid cultures from Jamaican fruit bats (JFB, Artibeus jamaicensis), which replicated the characteristic morphology of the gastrointestinal epithelium and showed tissue specific gene expression patterns and cell differentiation. To analyze whether JFB intestinal epithelial cells are susceptible to SARS-CoV-2, we performed in vitro infection experiments. Increased SARS-CoV-2 RNA was found in both cell lysates and supernatants from the infected organoids after 48 h, and sgRNA also was detected, indicating that the JFB intestinal epithelium supports limited viral replication. However, no infectious virus was released into the culture media, and no cytopathic effects were observed. Gene expression studies revealed a significant induction of type I interferon and inflammatory cytokine genes in response to active SARS-CoV-2 virus but not to TLR agonist treatment. Untargeted analysis of the organoid proteome using data-independent acquisition mass spectrometry (DIA-MS) revealed a significant increase in proteins and pathways associated with inflammatory signaling, cell turnover and repair, and SARS-CoV-2 infection. Collectively, our data suggest that primary intestinal epithelial cells from JFBs are largely resistant to SARS-CoV-2 infection and cell damage, likely because they are able to mount a strong antiviral interferon and regenerative response upon infection.