Project description:High throughput Illumina sequencing of poly-A selected RNA from Arabidopsis Col and Ler reciprocal F1 hybrid embryo and endosperm tissue isolated at 6-7 days after pollination to identify imprinted genes.
Project description:Here we report genome-wide high resolution allele-specific maps of DNA methylation and histone H3 lysine 27 trimethylation (H3K27me3) in maize endosperm. To investigate the allele-specific DNA methylation pattern of maize endosperm on a genome-wide scale, we performed MethylC-seq for shoot, embryo, and endosperm tissue 12 d after pollination (DAP) of inbred B73, and the endosperm tissue 12 DAP of reciprocal crosses B73 Ã Mo17 (BM) and Mo17 Ã B73 (MB). We also performed additional RNA-seq for samples from 12-DAP and 10-DAP endosperm of both reciprocal crosses between inbreds B73 and Mo17
Project description:High throughput Illumina sequencing of poly-A selected RNA from Arabidopsis Col and Ler reciprocal F1 hybrid embryo and endosperm tissue isolated at 6-7 days after pollination to identify imprinted genes. Examination of parent-of-origin specific and total gene expression in seed tissues.
Project description:RNA-seq experiment on reciprocal F1 hybrid cross between two diverse mouse strains NOD/ShiLtJ and PWK/PhJ to study the extent of Allele-specific expression (ASE) and the cause of ASE.
Project description:We profiled genome-wide gene expression of 170 individual mid-gestation (embryonic day 11.5) whole mouse embryos derived from a 2-generation interspecies mouse cross and asked to what extent genetic variation drives four important parameters of regulatory architecture: allele-specific expression (ASE), imprinting, trans-regulatory effects, and maternal effect. The inbred strain C57BL/6J and wild-derived inbred strain CAST/EiJ were used in reciprocal crosses to generate F1 embryos. F1 progeny were backcrossed to C57BL/6J in reciprocal crosses to generate 154 N2 embryos. We employed a backcross design, in which N2 offspring have genotypically distinct parents, to enable comparison of gene expression for offspring from each side of the reciprocal cross. Our findings demonstrate that genetic variation contributes to widespread gene expression differences during mammalian embryogenesis. Transcriptome analysis of E11.5 mouse embryos: 16 F1 embryos from reciprocally crossed C57BL/6J and CastEi/J parents; and 154 N2 embryos from reciprocal backcross of F1s to the C57BL/6J parent.
Project description:We profiled genome-wide gene expression of 170 individual mid-gestation (embryonic day 11.5) whole mouse embryos derived from a 2-generation interspecies mouse cross and asked to what extent genetic variation drives four important parameters of regulatory architecture: allele-specific expression (ASE), imprinting, trans-regulatory effects, and maternal effect. The inbred strain C57BL/6J and wild-derived inbred strain CAST/EiJ were used in reciprocal crosses to generate F1 embryos. F1 progeny were backcrossed to C57BL/6J in reciprocal crosses to generate 154 N2 embryos. We employed a backcross design, in which N2 offspring have genotypically distinct parents, to enable comparison of gene expression for offspring from each side of the reciprocal cross. Our findings demonstrate that genetic variation contributes to widespread gene expression differences during mammalian embryogenesis.
Project description:Rice is a very important food staple that feeds more than half the world's population. Two major Asian cultivated rice (Oryza sativa L.) subspecies, japonica and indica, show significant phenotypic variation in their stress responses. However, the molecular mechanisms underlying this phenotypic variation are still largely unknown. A common link among different stresses is that they produce an oxidative burst and result in an increase of reactive oxygen species (ROS). In this study, methyl viologen (MV) as a ROS agent was applied to investigate the rice oxidative stress response. We observed that 93-11 (indica) seedlings exhibited leaf senescence with severe lesions under MV treatment compared to Nipponbare (japonica). Whole-genome microarray experiments were conducted, and 1,062 probe sets were identified with gene expression level polymorphisms between the two rice cultivars in addition to differential expression under MV treatment, which were assigned as Core Intersectional Probesets (CIPs). These CIPs were analyzed by gene ontology (GO) and highlighted with enrichment GO terms related to toxin and oxidative stress responses as well as other responses. These GO term-enriched genes of the CIPs include glutathine S-transferases (GSTs), P450, plant defense genes, and secondary metabolism related genes such as chalcone synthase (CHS). Further insertion/deletion (InDel) and regulatory element analyses for these identified CIPs suggested that there may be some eQTL hotspots related to oxidative stress in the rice genome, such as GST genes encoded on chromosome 10. In addition, we identified a group of marker genes individuating the japonica and indica subspecies. In summary, we developed a new strategy combining biological experiments and data mining to study the possible molecular mechanism of phenotypic variation during oxidative stress between Nipponbare and 93-11. This study will aid in the analysis of the molecular basis of quantitative traits.