Project description:A cell-based phenotypic screen for inhibitors of biofilm formation in Mycobacterium tuberculosis (Mtb) identified the small molecule TCA1, which has bactericidal activity against both drug susceptible and drug resistant Mtb, and synergizes with rifampicin (RIF) or isoniazid (INH) in sterilization of Mtb in vitro. In addition, TCA1 has bactericidal activity against non-replicating Mtb in vitro and is efficacious in acute and chronic Mtb infection mouse models, both alone and in combination with INH or RIF. Transcriptional analysis revealed that TCA1 down-regulates genes known to be involved in Mtb dormancy and drug tolerance. Mutagenesis and affinity-based methods identified DprE1 and MoeW, enzymes involved in cell wall and molybdenum cofactor biosynthesis, respectively, as the targets responsible for TCA1M-bM-^@M-^Ys activity. These in vitro and in vivo results indicate that TCA1functions by a novel mechanism and suggest that it may be the first product of a promising new approach for the development of anti-tuberculosis drugs. Transcriptional profile of TCA1-treated cells relative to DMSO-treated control. Three biological replicates, third is a dye flip.
Project description:A cell-based phenotypic screen for inhibitors of biofilm formation in Mycobacterium tuberculosis (Mtb) identified the small molecule TCA1, which has bactericidal activity against both drug susceptible and drug resistant Mtb, and synergizes with rifampicin (RIF) or isoniazid (INH) in sterilization of Mtb in vitro. In addition, TCA1 has bactericidal activity against non-replicating Mtb in vitro and is efficacious in acute and chronic Mtb infection mouse models, both alone and in combination with INH or RIF. Transcriptional analysis revealed that TCA1 down-regulates genes known to be involved in Mtb dormancy and drug tolerance. Mutagenesis and affinity-based methods identified DprE1 and MoeW, enzymes involved in cell wall and molybdenum cofactor biosynthesis, respectively, as the targets responsible for TCA1’s activity. These in vitro and in vivo results indicate that TCA1functions by a novel mechanism and suggest that it may be the first product of a promising new approach for the development of anti-tuberculosis drugs.
Project description:ROS can damage cellular components and is a key player in many cellular signaling. Tuberculosis remains a major global public health concern largely due to the ability of its causative agent-Mycobacterium tuberculosis (Mtb) to subvert ROS toxicity. DNA methylation deficiency was previously shown to attenuate the Mtb virulence. But the role of DNA methyltransferase in Mycobacteria survival and the link with ROS are unknown. Mycobacterial protein Rv3204 is a DNA methyltransferase specific for N4-methylcytosine instead of N6-methyladenine (m6A) or 5-methylocytosine (m5C). The survival rate of m4C methyltransferase deletion mutants was lowered, accompanied by higher accumulation of ROS and failure of upregulating the transcription of gene engaged in ROS clearance upon rifampin(Rif) exposure.
Project description:This RNA-Seq study of gene expression in M. tuberculosis was done as part of the FLUTE project (NIH grant U19-AI107774, Eric Rubin, program director). There are 3 replicates each for Mtb H37Rv grown under the following conditions: 0.1% butyrate, 0.4% glucose, butyrate+glucose, low iron, acidic conditions, and several RIF-resistant mutants of Beijing strain HN878 with different mutations in RpoB.