Project description:Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Middle East. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp Vespa orientalis and in most cases it is resistant to varroa mites. The Thorax control sample of A. m. syriaca in this experiment was originally collected and stored since 2001 from Wadi Ben Hammad a remote valley in the southern region of Jordan. Using morphometric and Mitochondrial DNA markers it was proved that bees from this area had show higher similarity than other samples collected from the Middle East as represented by reference samples collected in 1952 by Brother Adam. The samples L1-L5 are collected from the National Center for Agricultural Research and Extension breading apiary which was originally established for the conservation of Apis mellifera syriaca. Goal was to use the genetic information in the breeding for varroa resistant bees and to determine the successfulness of this conservation program. Project funded by USAID-MERC grant number: TA-MOU-09-M29-075.
Project description:We have identified a honeybee (Apis mellifera) odorant receptor (Or) for the queen substance 9-oxo-2-decenoic acid (9-ODA) from four candidate sex pheromone odorant receptors from the honeybee genome based on their biased expression in drone antennae. Keywords: Tissue Comparison
Project description:We studied the molecular mechanisms underlying the impact of pollen nutrients on honey bee (Apis mellifera) health and how those nutrients improve resistance to parasites. Using digital gene expression, we determined the changes in gene expression induced by pollen intake in worker bees parasitized or not by the mites Varroa destructor, known for suppressing immunity and decreasing lifespan of bees.
Project description:Explorative description of the gut microbiota of Apis mellifera ligustica. the study aims at describing the diverse fractions of the microbial community including bacteria, fungi, unicellular parasites
Project description:This experiment examines gene expression profiles in individual honey bee brains (adult worker Apis mellifera). The purpose is to test whether behavioral phenotype can be predicted by expression profiles in individual brains in a naturalistic context (i.e., colonies in the field). The two behavioral phenotypes examined are 'nurse' and 'forager'. Other factors examined are age, genotype (full-sister group), and colony environment.<br><br> An additional processed data file is available on the FTP site for this experiment.
Project description:New insights into the transcriptional regulation of behavioral plasticity in honey bees gained by analyzing brain genes expression with the CAGEscan technique that involves identification of specific transcription factors, cis regulatory motifs and alternate transcriptional start sites Examination of 2 different types of Honey Bee Apis Mellifera samples (Nurse and Foragers)