Project description:RNA silencing is a post-transcriptional gene-silencing mechanism mediated by microRNAs (miRNAs). However, the regulatory mechanism of RNA silencing during viral infection is unclear. TAR RNA-binding protein (TRBP) is an enhancer of RNA silencing that induces miRNA maturation by interacting with the ribonuclease Dicer. TRBP interacts with a virus sensor protein, laboratory of genetics and physiology 2 (LGP2), in the early stage of viral infection of human cells. Next, it induces apoptosis by inhibiting the maturation of miRNAs, thereby upregulating the expression of apoptosis regulatory genes. In this study, we show that TRBP undergoes a functional conversion in the late stage of viral infection. Viral infection resulted in the activation of caspases that proteolytically processed TRBP into two fragments. The N-terminal fragment did not interact with Dicer but interacted with type I interferon (IFN) signaling modulators, such as protein kinase R (PKR) and LGP2, and induced ER stress. The end results were irreversible apoptosis and suppression of IFN signaling. Our results demonstrate that the processing of TRBP enhances apoptosis, reducing IFN signaling during viral infection.
Project description:RNA silencing is a post-transcriptional gene-silencing mechanism mediated by microRNAs (miRNAs). However, the regulatory mechanism of RNA silencing during viral infection is unclear. TAR RNA-binding protein (TRBP) is an enhancer of RNA silencing that induces miRNA maturation by interacting with the ribonuclease Dicer. TRBP interacts with a virus sensor protein, laboratory of genetics and physiology 2 (LGP2), in the early stage of viral infection of human cells. Next, it induces apoptosis by inhibiting the maturation of miRNAs, thereby upregulating the expression of apoptosis regulatory genes. In this study, we show that TRBP undergoes a functional conversion in the late stage of viral infection. Viral infection resulted in the activation of caspases that proteolytically processed TRBP into two fragments. The N-terminal fragment did not interact with Dicer but interacted with type I interferon (IFN) signaling modulators, such as protein kinase R (PKR) and LGP2, and induced ER stress. The end results were irreversible apoptosis and suppression of IFN signaling. Our results demonstrate that the processing of TRBP enhances apoptosis, reducing IFN signaling during viral infection.
Project description:Mitochondria drive apoptosis by releasing pro-apoptotic proteins that promote caspase activation in the cytosol. The rhomboid-like protease PARL, an intramembrane cleaving peptidase in the inner membrane, regulates mitophagy and cell death pathways, but its role in apoptosis remained enigmatic. Here, we employed PARL-based proteomics to define its substrate spectrum. Our data identified the mitochondrial pro-apoptotic protein Smac/DIABLO as a PARL substrate. In apoptotic cells, Smac/DIABLO is released into the cytosol and promotes caspase activity by inhibiting IAPs. Intramembrane cleavage of Smac/DIABLO by PARL generates an amino terminal IAP-binding motif, which is required for its apoptotic activity. Loss of PARL impairs proteolytic maturation of Smac/DIABLO, which fails to bind XIAP. Smac/DIABLO peptidomimetics, downregulation of XIAP or cytosolic expression of cleaved Smac/DIABLO restores apoptosis in PARL-deficient cells. Our results discover a pro-apoptotic function of PARL and identify PARL-mediated Smac/DIABLO processing and cytochrome c release facilitated by OPA1 dependent cristae remodeling as two independent pro-apoptotic pathways in mitochondria. Please note that these data are overlapping with data uploaded under: PXD004914. Exclusively in this upload, you will find the S277A mutant immunoprecipitations.
Project description:Influenza A virus (IAV), one of the most prevalent respiratory diseases, causes pandemics around the world. The multifunctional non-structural protein 1 (NS1) of IAV is a viral antagonist that suppresses host antiviral response. However, the mechanism by which NS1 modulates the RNA interference (RNAi) pathway remains unclear. Here, we identified interactions between NS1 proteins of Influenza A/PR8/34 (H1N1; IAV-PR8) and Influenza A/WSN/1/33 (H1N1; IAV-WSN) and Dicer’s cofactor TAR-RNA binding protein (TRBP). We found that the N-terminal RNA binding domain (RBD) of NS1 and the first two domains of TRBP protein mediated this interaction. Furthermore, two amino acid residues (Arg at position 38 and Lys at position 41) in NS1 were essential for the interaction. We generated TRBP knockout cells and found that NS1 instead of NS1 mutants (two-point mutations within NS1, R38A/K41A) inhibited the process of microRNA (miRNA) maturation by binding with TRBP. PR8-infected cells showed masking of short hairpin RNA (shRNA)-mediated RNAi, which was not observed after mutant virus-containing NS1 mutation (R38A/K41A, termed PR8/3841) infection. Moreover, abundant viral small interfering RNAs (vsiRNAs) were detected in vitro and in vivo upon PR8/3841 infection. We identify, for the first time, the interaction between NS1 and TRBP that affects host RNAi machinery.
Project description:TRBP has two known functions as Dicer co-factor and PKR inhibitor. However, the role of TRBP in miRNA biogenesis is controversial and its regulation of PKR in mitosis remains unexplored. Here, we generate TRBP KO HeLa cells and find that TRBP depletion alters Dicer processing sites of a subset of miRNAs, but does not affect Dicer stability, miRNA abundance, or Argonaute loading. By generating PACT, another Dicer interactor, and TRBP/PACT double-KO cells, we further show that TRBP and PACT do not functionally compensate each other and that only TRBP contributes to Dicer processing. We also report that TRBP is hyperphosphorylated by JNK in M phase when PKR is activated by cellular dsRNAs. Hyperphosphorylation potentiates the inhibitory activity of TRBP on PKR, suppressing PKR in M-G1 transition. By generating the first human TRBP KO, our study clarifies the role of TRBP and unveils negative feedback regulation of PKR through TRBP phosphorylation.
Project description:Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of intrinsic, innate and adaptive viral immune evasion. Here, we employ multiplexed tandem mass tag-based proteomics to characterise host proteins targeted for degradation late during HCMV infection. This approach revealed that mixed lineage kinase domain-like protein (MLKL), a key terminal mediator of cellular necroptosis, was rapidly and persistently degraded by the minimally passaged HCMV strain Merlin but not the extensively passaged strain AD169. The strain Merlin viral inhibitor of apoptosis pUL36 was necessary and sufficient both to degrade MLKL and to inhibit necroptosis. Furthermore, mutation of pUL36 Cys131 abrogated MLKL degradation and restored necroptosis. As the same residue is also required for pUL36-mediated inhibition of apoptosis by preventing proteolytic activation of pro-caspase 8, we define pUL36 as a multifunctional inhibitor of both apoptotic and necroptotic cell death.