Project description:Gut dysbiosis is closely involved in the pathogenesis of inflammatory bowel disease (IBD). However, it remains unclear whether IBD-associated gut dysbiosis plays a primary role in disease manifestation or is merely secondary to intestinal inflammation. Here, we established a humanized gnotobiotic (hGB) mouse system to assess the functional role of gut dysbiosis associated with two types of IBD - Crohn's disease (CD) and ulcerative colitis (UC). In order to explore the functional impact of dysbiotic microbiota in IBD patients on host immune responses, we analyzed gene expression profiles in colonic mucosa of hGB mice colonized with healty (HC), CD, and UC microbiota.
Project description:Significant gut microbiota heterogeneity exists amongst UC patients though the clinical implications of this variance are unknown. European and South Asian UC patients exhibit distinct disease risk alleles, many of which regulate immune function and relate to variation in gut microbiota β-diversity. We hypothesized ethnically distinct UC patients exhibit discrete gut microbiotas with unique luminal metabolic programming that influence adaptive immune responses and relate to clinical status. Using parallel bacterial 16S rRNA and fungal ITS2 sequencing of fecal samples (UC n=30; healthy n=13), we corroborated previous observations of UC-associated depletion of bacterial diversity and demonstrated significant gastrointestinal expansion of Saccharomycetales as a novel UC characteristic. We identified four distinct microbial community states (MCS 1-4), confirmed their existence using microbiota data from an independent UC cohort, and show they co-associate with patient ethnicity and degree of disease severity. Each MCS was predicted to be uniquely enriched for specific amino acid, carbohydrate, and lipid metabolism pathways and exhibited significant luminal enrichment of metabolic products from these pathways. Using a novel in vitro human DC/T-cell assay we show that DC exposure to patient fecal water led to MCS -specific changes in T-cell populations, particularly the Th1:Th2 ratio, and that patients with the most severe disease exhibited the greatest Th2 skewing. Thus, based on ethnicity, microbiome composition, and associated metabolic dysfunction, UC patients may be stratified in a clinically and immunologically meaningful manner, providing a platform for the development of FMC-focused therapy. Fecal microbiome was assessed with Affymetrix PhyloChip arrays from patients with ulcerative colitis and healthy controls.
Project description:Abstract. Background: The cause of ulcerative colitis (UC) is not yet fully understood. Previous research has pointed towards a potential role for mutations in NOD2 in promoting the onset and progression of inflammatory bowel disease (IBD) by altering the microbiota of the gut. However, the relationship between toll-like receptor 4 (TLR4) and gut microbiota in IBD is not well understood. To shed light on this, the interaction between TLR4 and gut microbiota was studied using a mouse model of IBD. Methods: To examine the function of TLR4 signaling in intestinal injury repair, researchers developed Dextran Sulfate Sodium Salt (DSS)-induced colitis and injury models in both wild-type (WT) mice and TLR4 knockout (TLR4-KO) mice. To assess changes in the gut microbiota, 16S rRNA sequencing was conducted on fecal samples from both the TLR4-KO and WT enteritis mouse models. Results: The data obtained depicted a protective function of TLR4 against DSS-induced colitis. The gut microbiota composition was found to vary considerably between the WT and TLR4-KO mice groups as indicated by β-diversity analysis and operational taxonomic units (OTUs) cluster. Statistical analysis of microbial multivariate variables depicted an elevated abundance of Escherichia coli/Shigella, Gammaproteobacteria, Tenerlcutes, Deferribacteres, Enterobacteria, Rikenellaceae, and Proteobacteria in the gut microbiota of TLR4-KO mice, whereas there was a considerable reduction in Bacteroidetes at five different levels of the phylogenetic hierarchy including phylum, class, order, family, and genus in comparison with the WT control. Conclusion: TLR4 may protect intestinal epithelial cells from damage in response to DSS-induced injury by controlling the microbiota in the gut.
Project description:Intervention1: NIL: NIL
Control Intervention1: NIL: NIL
Primary outcome(s): 1). Comparative difference in gut microbial signatures in healthy individuals, colorectal (CRC) and ulcerative colitis (UC) patients using BugSpeaks microbiome analytical platform
2). Comparative difference in stool metabolites in healthy individuals, CRC and UC patients
Timepoint: Screening Visit (Up to day 3) Baseline Visit- Day 0
Project description:Triclosan (TCS), an antimicrobial agent in thousands of consumer products, is a risk factor for colitis and colitis-associated colorectal cancer. While the intestinal toxicities of TCS require the presence of gut microbiota, the molecular mechanisms involved have not been defined. Here we show that intestinal commensal microbes mediate metabolic activation of TCS in the colon and drive its gut toxicology. Using a range of in vitro, ex vivo, and in vivo approaches, we identify specific microbial β-glucuronidase (GUS) enzymes involved and pinpoint molecular motifs required to metabolically activate TCS in the gut. Finally, we show that targeted inhibition of bacterial GUS enzymes abolishes the colitis-promoting effects of TCS, supporting the essential roles of specific microbial proteins in TCS toxicity. Our results define a mechanism by which intestinal microbes cause the gut toxicity of environmental chemicals and suggest a therapeutic approach to alleviate colitis and associated diseases.
Project description:We report the first case series of ICI associated colitis successfully treated with fecal microbiota transplantation (FMT), with reconstitution of the gut microbiome and a relative increase in the proportion of regulatory T cells (Tregs) within the colonic mucosa. These preliminary data provide evidence that modulation of the gut microbiome may abrogate ICI-associated colitis.
Project description:The human gut is inhabited by a complex ecosystem of microorganisms, encompassing bacteria, viruses, protozoa, and fungi. Recent research has illuminated the significance of the gut fungal microbiota (mycobiota) in shaping host immunity and influencing the onset and progression of various human diseases. While most investigations into gut microbiota have centered on bacteria, accumulating evidence has underscored the role of mycobiota in the development of inflammatory bowel diseases (IBD), including both ulcerative colitis (UC) and Crohn's disease (CD). In this study, we present the isolation of the live Malassezia globosa strains from the intestinal mucosa of UC patients for the first time. We provide a comprehensive analysis of the characteristics and virulence of this fungus. Malassezia, primarily known to inhabit human skin, prompted us to compare the genomes, transcriptomes, and virulence of M. globosa gut isolates with those of M. globosa strains isolated from the skin. This comparative analysis aimed to discern potential niche-specific adaptations of the fungus. Our findings reveal a striking disparity in the pathogenicity of M. globosa isolated from the gut compared to its skin counterpart. In a mouse model, gut-isolated M. globosa exhibited a more pronounced exacerbation of DSS-induced colitis and elevated production of inflammatory cytokines. Additionally, transcriptome analysis indicated that gut isolates of M. globosa display heightened sensitivity to normoxia compared to their skin-isolated counterparts, suggesting adaptation to the hypoxic conditions prevalent in the intestinal mucosal environment
Project description:Chronic acid suppression by proton pump inhibitor (PPI) has been hypothesized to alter the gut microbiota via a change in intestinal pH. To evaluate the changes in gut microbiota composition by long-term PPI treatment. Twenty-four week old F344 rats were fed with (n = 5) or without (n = 6) lansoprazole (PPI) for 50 weeks. Then, profiles of luminal microbiota in the terminal ileum were analyzed. Pyrosequencing for 16S rRNA gene was performed by genome sequencer FLX (454 Life Sciences/Roche) and analyzed by metagenomic bioinformatics.