Project description:The global significance of marine non-cyanobacterial diazotrophs, notably heterotrophic bacterial diazotrophs (HBDs), has become increasingly clear. Understanding N2 fixation rates for these largely uncultured organisms poses a challenge due to uncertain growth requirements and complex nitrogenase regulation. We identified Candidatus Thalassolituus haligoni as an Oceanospirillales member, closely related to other significant γ-proteobacterial HBDs. Pangenome analysis reinforces this classification, indicating the isolate belongs to the same species as the uncultured metagenome-assembled genome Arc-Gamma-03. Analysis of the nifH gene in amplicon sequencing libraries reveals the extensive distribution of Cand. T. haligoni across the Pacific, Atlantic and Arctic Oceans. Through combined proteomic analysis and N2 fixation rate measurements, we confirmed the isolate’s capacity for nitrate independent N2 fixation, although a clear understanding of nitrogenase regulation remains unclear. Overall, our study highlights the significance of Cand. T. haligoni as the first globally distributed, cultured model species within the understudied group of Oceanospirillales, and γ-HBDs in general.
Project description:We present the draft genome of Nitrospirae bacterium Nbg-4 as a representative of this clade and couple this to in situ protein expression under sulfate-enriched and sulfate-depleted conditions in rice paddy soil. The proteins were extracted from the soil and analysed via LC-MS/MS measurements.
Project description:The Candidatus phylum Omnitrophica (candidate division OP3) occurs ubiquitous in anaerobic habitats, but is currently characterized only by draft genomes from metagenomes and single cells. We had visualized cells of the phylotype OP3 LiM in methanogenic cultures on limonene as small epibiontic cells. In this study, we enriched OP3 cells by double density centrifugation and obtained the first closed genome of an apparently clonal OP3 cell population applying metagenomics and PCR for gap closure. Filaments of acetoclastic Methanosaeta, the largest morphotype in limonene enrichment cultures, contained empty cells, dead cells and cells devoid of rRNA or both rRNA and DNA according to TEM, thin-section TEM, SEM, CARD-FISH and Live/Dead images. OP3 LiM cells were ultramicrobacteria (200-300 nm in diameter) and showed two physiological stages in CARD-FISH fluorescence signals: strong signals indicated many rRNA molecules and an active metabolism of OP3 LiM cells attached to Bacteria and to Archaea, whereas free-living OP3 cells had weak signals. Metaproteomics revealed that OP3 LiM lives with highly expressed secreted proteins involved in depolymerization and uptake of macromolecules, an active glycolysis and energy conservation by the utilization of pyruvate via a pyruvate:ferredoxin oxidoreductase and an RNF complex (Ferredoxin:NAD oxidoreductase). Besides sugar fermentation, a nucleotidyl transferase may contribute to energy conservation by phosphorolysis, the phosphate-dependent depolymerization of nucleic acids. Thin section TEM showed distinctive structures of predation that had been previously observed for “Velamenicoccus”. Our study demonstrated a predatory metabolism for OP3 LiM cells and we propose as name for OP3 LiM Candidatus Velamenicoccus archaeovorus gen. nov., sp. nov..