Project description:The global significance of marine non-cyanobacterial diazotrophs, notably heterotrophic bacterial diazotrophs (HBDs), has become increasingly clear. Understanding N2 fixation rates for these largely uncultured organisms poses a challenge due to uncertain growth requirements and complex nitrogenase regulation. We identified Candidatus Thalassolituus haligoni as an Oceanospirillales member, closely related to other significant γ-proteobacterial HBDs. Pangenome analysis reinforces this classification, indicating the isolate belongs to the same species as the uncultured metagenome-assembled genome Arc-Gamma-03. Analysis of the nifH gene in amplicon sequencing libraries reveals the extensive distribution of Cand. T. haligoni across the Pacific, Atlantic and Arctic Oceans. Through combined proteomic analysis and N2 fixation rate measurements, we confirmed the isolate’s capacity for nitrate independent N2 fixation, although a clear understanding of nitrogenase regulation remains unclear. Overall, our study highlights the significance of Cand. T. haligoni as the first globally distributed, cultured model species within the understudied group of Oceanospirillales, and γ-HBDs in general.
Project description:We present the draft genome of Nitrospirae bacterium Nbg-4 as a representative of this clade and couple this to in situ protein expression under sulfate-enriched and sulfate-depleted conditions in rice paddy soil. The proteins were extracted from the soil and analysed via LC-MS/MS measurements.