Project description:Antibiotic resistance associated with the expression of the clinically significant carbapenemases, IMP, KPC, and NDM and OXA-48 in Enterobacteriaceae is emerging as a worldwide calamity to health care. In Australia, IMP-producing Enterobacteriaceae is the most prevalent carbapenemase-producing Enterobacteriaceae (CPE). Genomic characteristics of such carbapenemase-producing Enterobacteriaceae (CPE) are well described, but the corresponding proteome is poorly characterised. We have thus developed a method to analyse dynamic changes in the proteome of CPE under antibiotic pressure. Specifically, we have investigated the effect of meropenem at sub-lethal concentrations to develop a better understanding of how antibiotic pressure leads to resistance. Escherichia coli, producing either NDM, IMP or KPC type carbapenemase were included in this study, and their proteomes were analysed in growth conditions with or without meropenem.
Project description:The increasing spread of drug-resistant bacterial strains presents great challenges to clinical antibacterial treatment and public health, particularly with regard to β-lactamase-producing Enterobacteriaceae. A rapid and accurate detection method that can expedite precise clinical diagnosis and rational administration of antibiotics is urgently needed.
Project description:The exchange of mobile genomic islands (MGIs) between microorganisms is often mediated by phages. As a consequence, not only phage genes are transferred, but also genes that have no particular function in the phage's lysogenic cycle. If they provide benefits to the phage's host, such genes are referred to as ‘morons’. The present study was aimed at characterizing a set of Enterobacter cloacae, Klebsiella pneumoniae and Escherichia coli isolates with exceptional antibiotic resistance phenotypes from patients in a neonatal ward. Unexpectedly, these analyses unveiled the existence of a novel family of closely related MGIs in Enterobacteriaceae. The respective MGI from E. cloacae was named MIR17-GI. Importantly, our observations show that MIR17-GI-like MGIs harbor genes associated with high-level resistance to cephalosporins. Further, we show that MIR17-GI-like islands are associated with integrated P4-like prophages. This implicates phages in the spread of cephalosporin resistance amongst Enterobacteriaceae. The discovery of a novel family of MGIs spreading ‘cephalosporinase morons’ is of high clinical relevance, because high-level cephalosporin resistance has serious implications for the treatment of patients with Enterobacteriaceal infections.