Project description:The marine Flavobacterium Formosa agariphila KMM 3901T is able to use a broad range of different carbohydrates as growth substrates. This is reflected in the strain’s repertoire of 13 polysaccharide utilization loci (PUL) in total. One PUL – termed as PUL H – is responsible for ulvan degradation, which is a widely distributed, algal-derived polysaccharide. The PUL comprises almost 40 genes, coding for transporters, lyases, glycoside hydrolases or sulfatases, among others. These proteins catalyse the breakdown of ulvan or the uptake of degradation products. A combined application of isotope labeling, subcellular protein fractionation and quantitative proteomics revealed that corresponding PUL encoded proteins were substrate specific up-regulated in ulvan-cultivated cells. The sulphated polysaccharide ulvan also induced the specific expression of proteins necessary for subsequent monosaccharide degradation. Compared to a control (fructose-cultivated cells), expression of PUL H additionally responded to rhamnose, a basic component of ulvan, indicating that this monosaccharide might signal ulvan availability in the environment. Our proteome analyses proofed a substrate specific expression of proteins involved in ulvan utilization and allowed us to deduce a comprehensive degradation pathway for this complex marine polysaccharide.
Project description:Seaweeds, including the green Ulva lactuca, can potentially reduce competition between feed, food, and fuel. They can also contribute to the improved development of weaned piglets. However, their indigestible polysaccharides of the cell wall pose a challenge. This can be addressed through carbohydrase supplementation, such as the recombinant ulvan lyase. The objective of our study was to assess the muscle metabolism of weaned piglets fed with 7% U. lactuca and 0.01% ulvan lyase supplementation, using an integrated transcriptomics (RNA-seq) and proteomics (LC-MS) approach.
Project description:Adaptations of Alteromonas sp. 76-1 to polysaccharide degradation: A CAZyme plasmid for ulvan degradation and two alginolytic systems
Project description:A recent algicidal mode indicates that fungal mycelia can wrap and eliminate almost all the co-cultivated algal cells within a short time. However, the regulation of molecular mechanism is rarely understood. Here, proteomic analysis was applied to investigate the algicidal process of Trametes versicolor F21a. Our results showed that 3,754 fungal proteins were identified, among which 2,809 unique proteins could be quantified during the process. 30 isoenzymes with the capacity of degradation biomass, belonging to Glycoside Hydrolases, Auxiliary Activities, Carbohydrate Esterases and Polysaccharide Lyases, were significantly up-regulated, suggesting that these enzymes probably employed synergistic mechanisms in degrading algal cells. Additionally, peptidase, exonuclease, manganese peroxidase and cytochrome c peroxidase were also up-regulated. 10% of the significantly up-regulated proteins were extracellular enzymes. Gene Ontology (GO) and KEGG pathway enrichment analysis demonstrated that the enriched metabolic pathways mainly contained carbon metabolism, selenocompound metabolism, sulfur assimilation and metabolism, as well as several amino acid biosynthesis pathways, which implied that these pathways should play vital roles in the synthesis of needed nutrition for the fungal mycelia via components of algal cells. Moreover, the fungal NmrA-like transcriptional regulator which represses the nitrogen metabolite was also enriched and might be a key regulator in eliminating algal cells
Project description:Seaweeds, including the green Ulva lactuca, can potentially reduce competition between feed, food, and fuel. They can also contribute to the improved development of weaned piglets. However, their indigestible polysaccharides of the cell wall pose a challenge. This can be addressed through carbohydrase supplementation, such as the recombinant ulvan lyase. The objective of our study was to assess the muscle metabolism of weaned piglets fed with 7% U. lactuca and 0.01% ulvan lyase supplementation, using an integrated transcriptomics and proteomics approach. Feeding piglets with seaweed and enzyme supplementation resulted in reduced macronutrient availability, leading to protein degradation through the proteasome (PSMD2), with resulting amino acids being utilized as an energy source (GOT2, IDH3B). Moreover, mineral element accumulation (iodine and bromine) contributed to increased oxidative stress, evident from elevated levels of antioxidant proteins like catalase, as a response to maintain tissue homeostasis. The upregulation of the gene AQP7, associated with the osmotic stress response, further supports these findings. Consequently, an increase in chaperone activity, including HSP90, was required to repair damaged proteins. Our results suggest that enzymatic supplementation may exacerbate the effects observed from feeding U. lactuca alone, potentially due to side effects arising from cell wall degradation during digestion.
Project description:Seaweeds, including the green Ulva lactuca, can potentially reduce competition between feed,food, and fuel. They can also contribute to the improved development of weaned piglets. However,their indigestible polysaccharides of the cell wall pose a challenge. This can be addressed throughcarbohydrase supplementation, such as the recombinant ulvan lyase. The objective of our study wasto assess the muscle metabolism of weaned piglets fed with 7% U. lactuca and 0.01% ulvan lyasesupplementation, using an integrated transcriptomics (RNA-seq) and proteomics (LC–MS) approach.Feeding piglets with seaweed and enzyme supplementation resulted in reduced macronutrientavailability, leading to protein degradation through the proteasome (PSMD2), with resulting aminoacids being utilized as an energy source (GOT2, IDH3B). Moreover, mineral element accumulationmay have contributed to increased oxidative stress, evident from elevated levels of antioxidantproteins like catalase, as a response to maintaining tissue homeostasis. The upregulation of the geneAQP7, associated with the osmotic stress response, further supports these findings. Consequently, anincrease in chaperone activity, including HSP90, was required to repair damaged proteins. Our resultssuggest that enzymatic supplementation may exacerbate the effects observed from feeding U. lactucaalone, potentially due to side effects of cell wall degradation during digestion.
Project description:Dietary fiber degradation is a key function of the human gut microbiota. The aim of this study was to increase our knowledge on the degradation of plant cell wall polysaccharide degradation by a prominent human gut bacterial species, Bacteroides xylanisolvens. The transcriptome analysis of B. xylanisolvens XB1AT revealed the existence of six and two genomic loci dedicated to the degradation of pectins and xylan, respectively. These loci or PUL ("Polysaccharide Utilization Loci") are known to encode enzyme systems in Bacteroides that are specific to a particular polysaccharide. Simple two-way comparisons between pectin or xylan sources (treatment) and glucose or xylose (control), collected during mid- and late-log phase. Three replicates per condition.