Project description:Background biology: Global warming has accelerated in recent decades, with the Arctic warming 2–3 times faster than the global average. As a result boreal species are expanding into the Arctic, at a pace reflecting environmental warming. Nevertheless, the poleward expansion of boreal marine species is restricted by their ability to tolerate low water temperatures, and in the case of intertidal species, sub-zero air temperatures during winter. In Greenland, however, the number of days with extreme sub-zero air temperatures has decreased by more than 50% since the 1950’s, suggesting that the low air temperature constraint is weakening. Although boreal intertidal species could potentially benefit from this warmer climate to establish populations in the Arctic, recent work has shown that local intertidal summer air temperatures in Greenland can exceed 36°C. This temperature is above the thermoregulatory capacity of many boreal intertidal species, including the highly abundant blue mussel Mytilus edulis. Therefore will further colonisation of M. edulis in Greenland be inhibited by the increasingly warm summer temperatures. Aim of experiment: Intertidal animals (Greenland blue mussel M. edulis) were sampled in situ on the first warm days of the year from the inner (warmer) and outer (cooler) regions of the Godthåbsfjorden around Nuuk (64°N) to examine the fjord temperature gradient effect. In addition, subtidal M. edulis were also collected and subjected to two acute temperature shocks of 22 and 32°C, which represented common and extreme summer air temperatures for intertidal habitats near Nuuk.
Project description:We surveyed 15 lakes during the growing season of 2014 in Arctic lakes of southwest Greenland to determine which factors influence methane concentrations in these systems. Methane averaged 2.5 ?mol L-1 in lakes, but varied a great deal across the landscape with lakes on older landscapes farther from the ice sheet margin having some of the highest values of methane reported in lakes in the northern hemisphere (125 ?mol L-1). The most important factors influencing methane in Greenland lakes included ionic composition (SO4, Na, Cl) and chlorophyll a in the water column. DOC concentrations were also related to methane, but the short length of the study likely underestimated the influence and timing of DOC on methane concentrations in the region. Atmospheric methane concentrations are increasing globally, with freshwater ecosystems in northern latitudes continuing to serve as potentially large sources in the future. Much less is known about how freshwater lakes in Greenland fit in the global methane budget compared to other, more well-studied areas of the Arctic, hence our work provides essential data for a more complete view of this rapidly changing region.