Project description:We identified genome-wide binding regions of NdgR in Streptomyces coelicolor using chromatin immunoprecipitation sequencing (ChIP-seq). We constructed 6×myc-tagged NdgR strain using homologous recombination with myc-tagging vector. Analysis of the sequencing data aligned to Streptomyces coelicolor genome database (NC_003888).
Project description:Actinomycete genomes contain a plethora of orphan gene clusters encoding unknown secondary metabolites, and representing a huge unexploited pool of chemical diversity. The explosive increase in genome sequencing and the massive advance of bioinformatic tools have revolutionized the rationale for natural product discovery from actinomycetes. In this context, we applied a genome mining approach to discover a group of unique catecholate-hydroxamate siderophores termed as qinichelins from Streptomyces sp. MBT76. Quantitative proteomics statistically correlated a gene cluster of interest (qch) to its unknown chemotype (qinichelin), after which structural elucidation of isolated qinichelin was assisted by bioinformatics analysis and verified by MS2 and NMR experiments. Strikingly, intertwined functional crosstalk among four separately located gene clusters was implicated in the biosynthesis of qinichelins.
Project description:Investigation of whole genome gene expression level changes in Streptomyces sp. SirexAA-E (ActE) when grown on different carbon sources. The results of this study demonstrate that ActE upregulates a small number of genes specific for the utilization of the avaliable carbon source. Cellulolytic Streptomyces sp. SirexAA-E (ActE), isolated from the pinewood-boring wasp Sirex noctilio, has a genome enriched for biomass utilization. The secreted proteomes obtained from growth on pure polysaccharides catalyzed hydrolysis of cellulose, mannan, and xylan with specific activities comparable to Spezyme CP, a commercial cellulase preparation. During reaction of an ActE secretome with cellulose, reducing sugar release was markedly stimulated in the presence of O2. ActE also expresses and secretes an expanded repertoire of enzymes during growth on natural and pre-treated biomass. These results indicate a new microbial contribution to biomass utilization that is widely distributed in natural environments by insects
Project description:Streptomyces sp. M7 has demonstrated ability to remove lindane from culture media and soils. In this study, we used MS-based label-free quantitative proteomic to understand lindane degradation and its metabolic context in Streptomyces sp. M7. We identified the proteins involved in the up-stream degradation pathway. Our results demonstrated that mineralization of lindane is feasible since proteins from an unusual down-stream degradation pathway were also identified. Degradative steps were supported by an active catabolism that supplied energy and reducing equivalents in the form of NADPH. This is the first study in which degradation steps of an organochlorine compound and metabolic context are elucidate in a biotechnological genus as Streptomyces. These results serve as basement to study other degradative actinobacteria and to improve the degradation processes of Streptomyces sp. M7.