Project description:Retrospective investigation of genetic background of rapid progression of multiple myeloma into extramedullary relapse. Array-CGH showed chromothripsis in chromosome 18, hyperdiploidy, structural copy-number alterations. Utilization of novel NGS leukemia-related gene custom panel revealed patholological mutation in NRAS (c.181C>A; p.Gln61Lys) or variants of unknown significance in TP53, CUX1 and POU4F1.
Project description:Retrospective investigation of genetic background of rapid progression of multiple myeloma into extramedullary relapse. Array-CGH showed chromothripsis in chromosome 18, hyperdiploidy, structural copy-number alterations. Utilization of novel NGS leukemia-related gene custom panel revealed patholological mutation in NRAS (c.181C>A; p.Gln61Lys) or variants of unknown significance in TP53, CUX1 and POU4F1.
Project description:Background:Catastrophic chromosomal event known as chromothripsis was proven to be a significant hallmark of poor prognosis in several cancer diseases. While this phenomenon is very rare in among multiple myeloma (MM) patients, its presence in karyotype is associated with very poor prognosis. Case presentation:In our case, we report a 62 year female patient with rapid progression of multiple myeloma (MM) into extramedullary disease and short overall survival (OS?=?23 months). I-FISH investigation revealed presence of gain 1q21 and hyperdiploidy (+?5,+?9,+?15) in 82% and 86%, respectively, while IgH rearrangements, del(17)(p13) and del(13)(q14) were evaluated as negative.Whole-genome profiling using array-CGH showed complex genomic changes including hyperdiploidy (+?3,+?5,+?9,+?11, +?15,+?19), monosomy X, structural gains (1q21-1q23.1, 1q32-1q44, 16p13.13-16p11.2) and losses (1q23.1-1q32.1; 8p23.3-8p11.21) of genetic material and chromothripsis in chromosome 18 with 6 breakpoint areas. Next-generation sequencing showed a total of 338 variants with 1.8% (6/338) of pathological mutations in NRAS (c.181C?>?A; p.Gln61Lys) or variants of unknown significance in TP53, CUX1 and POU4F1. Conclusions:Our findings suggest that presence of chromothripsis should be considered as another important genetic hallmark of poor prognosis in MM patients and utilization of genome-wide screening techniques such as array-CGH and NGS improves the clinical diagnostics of the disease.
Project description:Extramedullary relapse (EM) of multiple myeloma (MM) is defined as infiltration of plasma cells (PC) outside of the bone marrow. EM is an aggressive form of the disease with a dismal outcome. We present cytogenetic findings of a 52-year-old female patient who was diagnosed with MM in 2008 and progression of MM to EM and plasmocellular leukemia.
Project description:Despite the development of novel therapeutic agents, multiple myeloma (MM) remains incurable, owing mainly to inevitable relapse in almost all patients. Some relapses occur as extramedullary disease (EMD), which is rare but is the most aggressive event in MM patients. Extramedullary myeloma (EMM) has extraordinary heterogeneous biological and clinical features. Previous studies have shown that expression levels of LncRNAs and mRNAs in different stages of MM are different. This study analyzes the expression levels of LncRNAs and mRNAs in primary plasma cells (PCs) from MM and EMM patients.
Project description:Extramedullary relapse (EM) of multiple myeloma (MM) is defined as infiltration of plasma cells (PC) outside of the bone marrow. EM is an aggressive form of the disease with a dismal outcome. We present cytogenetic findings of a 52-year-old female patient who was diagnosed with MM in 2008 and progression of MM to EM and plasmocellular leukemia retrospective analysis of TP53 mutation status showed presence of 2 known missense mutations in exon 6 (c.632C>T) and exon 7 (c.700T>C). EM relapse of this patient was connected to a change of the entire genome profile. We suppose that the extramedullary lesion originated by an expansion of one clone of tumor plasma cells from the bone marrow, which was confirmed by identical genomic profile of both tested samples. Thus, change of ploidy status should be considered as potential hallmark of adverse course of the disease.
Project description:Macrophage migration inhibitory factor (MIF) has been shown to promote disease progression in many malignancies, including multiple myeloma (MM). We previously reported that MIF regulates MM bone marrow homing and knockdown of MIF favors the extramedullary myeloma formation in mice. Here, based on MIF immunostaining of myeloma cells in paired intramedullary and extramedullary biopsies from 17 patients, we found lower MIF intensity in extramedullary MM (EMM) versus intramedullary MM (IMM). Flow cytometry and histology analysis in ARD cell line-derived xenograft models showed a portion of inoculated human MM cells lost their MIF expression (MIFLow) in vivo. Of note, IMM had dominantly MIFHigh cells, while EMM showed a significantly increased ratio of MIFLow cells. We harvested the extramedullary human MM cells from a mouse and generated single-cell transcriptomic data. The developmental trajectories of MM cells from the MIFHigh to MIFLow state were indicated. The MIFHigh cells featured higher proliferation. The MIFLow ones were more quiescent and harbored abundant ribosomal protein genes. Our findings identified in vivo differential regulation of MIF expression in MM and suggested a potential pathogenic role of MIF in the extramedullary spread of disease.
Project description:A patient derived orthotopic xenograft (PDOX) was generated from a patient with an 53 aggressive extramedullary multiple myeloma (EMM) to study in-depth genetic and epigenetic events and drug responses related to extramedullary disease. Whole DNA methylome of the EMM PDOX was also evaluated and compared with a published dataset of 101 newly-diagnosed and chemotherapy-naïve MM patients and normal plasma cells (NPC) (Agirre et al., 2015) A rather balanced proportion of hyper/hypomethylated sites different to previously reported widespread hypomethylation in MM was observed.