ABSTRACT: EMG produced TPA metagenomics assembly of the The antibiotic resistance potential of the preterm infant gut microbiome measured using shotgun metagenomics. (Antibiotic resistance within the preterm infant gut.) data set.
Project description:91 preterm infant gut metaproteomes measured in technical duplicate using an eleven salt pulse 2D-LC-MS/MS method. Samples represent 17 preterm infants over the first several weeks of life, of which 6 preterm infants eventually developed necrotizing enterocolitis.
Project description:Microbial colonization of the human gastrointestinal tract plays an important role in establishing health and homeostasis. However, the time-dependent and related functional signatures of microbial and human proteins during early colonization of the gut have yet to be determined. Thus, we employed shotgun proteomics via nano-2D-LC-MS/MS to simultaneously monitor microbial and human proteins in fecal samples from a healthy preterm infant during early development. ). All MS/MS spectra were searched against a predicted protein database containing 25 microbial species along with the Human RefSeq2011 genome using the SEQUEST algorithm (Eng et al, 1994), and filtered with DTASelect version 1.9 (Tabb et al, 2002) at the peptide level with standard filters [SEQUEST Xcorrs of at least 1.8 (+1), 2.5 (+2) 3.5 (+3)] organizing identified peptides to their corresponding protein sequences. This study provides the first elucidation of coordinated human and microbial proteins in the infant gut during early development.
Project description:<p>The study of antimicrobial resistance (AMR) in infectious diarrhea has generally been limited to cultivation, antimicrobial susceptibility testing and targeted PCR assays. When individual strains of significance are identified, whole genome shotgun (WGS) sequencing of important clones and clades is performed. Genes that encode resistance to antibiotics have been detected in environmental, insect, human and animal metagenomes and are known as "resistomes". While metagenomic datasets have been mined to characterize the healthy human gut resistome in the Human Microbiome Project and MetaHIT and in a Yanomani Amerindian cohort, directed metagenomic sequencing has not been used to examine the epidemiology of AMR. Especially in developing countries where sanitation is poor, diarrhea and enteric pathogens likely serve to disseminate antibiotic resistance elements of clinical significance. Unregulated use of antibiotics further exacerbates the problem by selection for acquisition of resistance. This is exemplified by recent reports of multiple antibiotic resistance in Shigella strains in India, in Escherichia coli in India and Pakistan, and in nontyphoidal Salmonella (NTS) in South-East Asia. We propose to use deep metagenomic sequencing and genome level assembly to study the epidemiology of AMR in stools of children suffering from diarrhea. Here the epidemiology component will be surveillance and analysis of the microbial composition (to the bacterial species/strain level where possible) and its constituent antimicrobial resistance genetic elements (such as plasmids, integrons, transposons and other mobile genetic elements, or MGEs) in samples from a cohort where diarrhea is prevalent and antibiotic exposure is endemic. The goal will be to assess whether consortia of specific mobile antimicrobial resistance elements associate with species/strains and whether their presence is enhanced or amplified in diarrheal microbiomes and in the presence of antibiotic exposure. This work could potentially identify clonal complexes of organisms and MGEs with enhanced resistance and the potential to transfer this resistance to other enteric pathogens.</p> <p>We have performed WGS, metagenomic assembly and gene/protein mapping to examine and characterize the types of AMR genes and transfer elements (transposons, integrons, bacteriophage, plasmids) and their distribution in bacterial species and strains assembled from DNA isolated from diarrheal and non-diarrheal stools. The samples were acquired from a cohort of pediatric patients and controls from Colombia, South America where antibiotic use is prevalent. As a control, the distribution and abundance of AMR genes can be compared to published studies where resistome gene lists from healthy cohort sequences were compiled. Our approach is more epidemiologic in nature, as we plan to identify and catalogue antimicrobial elements on MGEs capable of spread through a local population and further we will, where possible, link mobile antimicrobial resistance elements with specific strains within the population.</p>
| phs001260 | dbGaP
Project description:EMG produced TPA metagenomics assembly of the preterm infant gut metagenomes (NIH Y4 Cohort) (human gut metagenome) data set.
Project description:Injury occurring during critical periods of development may have long-term effects on inflammatory responses. Periventricular leukomalacia (PVL) is the most common cause of cerebral palsy (CP) in preterm infant. Activated leukocytes are the main source of inflammatory cytokines that give rise to white matter damage and CP in preterm infant. Here, we tested the hypothesis that inflammation profiles as pathogenic mediators for the occurrence of PVL in the neonatal period may persist in preterm children with CP at school age. Five preterm children with PVL-induced CP and gestational age-matched five preterm children with normal neurodevelopment were recruited from follow up clinics. Proinflammatory gene expression in the PBMCs from preterm children were determined by Superarray PCR study.
Project description:Development of the gut microbiota is greatly impacted in preterm infants. Despite increasing knowledge about microbiota composition in preterm infants, knowledge about the functional signatures of the intestinal microbiota remains limited. The aim was to study transitions in microbiota activity during the first six postnatal weeks in ten preterm infants. A total of 64 stool samples were measured by LC-MS/MS.
Project description:We used a DNA microarray chip covering 369 resistance types to investigate the relation of antibiotic resistance gene diversity with humansM-bM-^@M-^Y age. Metagenomic DNA from fecal samples of 123 healthy volunteers of four different age groups, i.e. pre-school Children (CH), School Children (SC), High School Students (HSS) and Adults (AD) were used for hybridization. The results showed that 80 different gene types were recovered from the 123 individuals gut microbiota, among which 25 were present in CH, 37 in SC, 58 in HSS and 72 in AD. Further analysis indicated that antibiotic resistance genes in groups of CH, SC and AD can be independently clustered, and those ones in group HSS are more divergent. The detailed analysis of antibiotic resistance genes in human gut is further described in the paper DNA microarray analysis reveals the antibiotic resistance gene diversity in human gut microbiota is age-related submitted to Sentific Reports The antibiotic resistance gene microarray is custom-designed (Roche NimbleGen), based on a single chip containing 3 internal replicated probe sets of 12 probes per resistance gene, covering the whole 315K 12-plex platform spots.