Project description:Intestinal microbiota colonization is important for intestinal development and health of preterm infants, especially those with extremely low birth weight. Recent studies indicated for a dynamic crosstalk between that gut microbiota and DNA methylome of host intestinal cells. Thereby, we sought to determine the epigenomic and metagenomic consequences of suppression of microbiota colonization in the intestine of preterm neonates to gain insights into biological pathways that shape the interface between the gut microbiota and the preterm intestinal cells. We examined 14 preterm piglets by comparing the conventional preterm neonates with those ones treated with oral antibiotics for genome wide DNA methylation and 16S rDNA microbiome. Our results demonstrated an extensive genome-wide DNA methylation changes in response to the suppression of intestinal microbe colonization, especially genes involved in neonatal immune response signaling and glycol-metabolism pathways were identified. Our study highlights several key genes that might predispose preterm neonates to NEC risk due to their key roles involved in the immune-metabolic networks. Our study not only provided rich omic-data to interpret molecular program in relation with microbiota-associated methylome-proteome network changes, but also confer clinical usage of key gene markers for potential early diagnostics of NEC of preterm neonates.
Project description:Development of the gut microbiota is greatly impacted in preterm infants. Despite increasing knowledge about microbiota composition in preterm infants, knowledge about the functional signatures of the intestinal microbiota remains limited. The aim was to study transitions in microbiota activity during the first six postnatal weeks in ten preterm infants. A total of 64 stool samples were measured by LC-MS/MS.
Project description:On going efforts are directed at understanding the mutualism between the gut microbiota and the host in breast-fed versus formula-fed infants. Due to the lack of tissue biopsies, no investigators have performed a global transcriptional (gene expression) analysis of the developing human intestine in healthy infants. As a result, the crosstalk between the microbiome and the host transcriptome in the developing mucosal-commensal environment has not been determined. In this study, we examined the host intestinal mRNA gene expression and microbial DNA profiles in full term 3 month-old infants exclusively formula fed (FF) (n=6) or breast fed (BF) (n=6) from birth to 3 months. Host mRNA microarray measurements were performed using isolated intact sloughed epithelial cells in stool samples collected at 3 months. Microbial composition from the same stool samples was assessed by metagenomic pyrosequencing. Both the host mRNA expression and bacterial microbiome phylogenetic profiles provided strong feature sets that clearly classified the two groups of babies (FF and BF). To determine the relationship between host epithelial cell gene expression and the bacterial colony profiles, the host transcriptome and functionally profiled microbiome data were analyzed in a multivariate manner. From a functional perspective, analysis of the gut microbiota's metagenome revealed that characteristics associated with virulence differed between the FF and BF babies. Using canonical correlation analysis, evidence of multivariate structure relating eleven host immunity / mucosal defense-related genes and microbiome virulence characteristics was observed. These results, for the first time, provide insight into the integrated responses of the host and microbiome to dietary substrates in the early neonatal period. Our data suggest that systems biology and computational modeling approaches that integrate “-omic” information from the host and the microbiome can identify important mechanistic pathways of intestinal development affecting the gut microbiome in the first few months of life. KEYWORDS: infant, breast-feeding, infant formula, exfoliated cells, transcriptome, metagenome, multivariate analysis, canonical correlation analysis 12 samples, 2 groups
Project description:91 preterm infant gut metaproteomes measured in technical duplicate using an eleven salt pulse 2D-LC-MS/MS method. Samples represent 17 preterm infants over the first several weeks of life, of which 6 preterm infants eventually developed necrotizing enterocolitis.
Project description:Necrotizing enterocolitis (NEC), a serious gastrointestinal disease that afflicts 5-10% of preterm infants, often progresses rapidly from mild food intolerance into extensive haemorrhage, inflammation and necrosis. Events leading to NEC have remained poorly defined. Similar disease characteristics are observed in preterm pigs 24-48 h after feeding formula. Using this model, we aimed to characterize the temporal development of NEC, and describe the functional and immunological response of the preterm intestine preceding NEC. Keywords: time course
Project description:Preterm Yorkshire piglets were provided parenteral nutrition for 14 days and developed cholestasis and histologic liver injury. Bottle-fed age-matched controls were provided sow milk replacer every 2-3 hours for 14 days.
Project description:Caesarean-delivered preterm pigs were fed 3 d of parenteral nutrition followed by 2 d of enteral formula feeding. Antibiotics (n=11) or control saline (n=13) were given twice daily from birth to tissue collection at d 5. NEC-lesions and intestinal structure, function, microbiology and immunity markers were recorded. We used Affymetrix microarrays to investigate gene expression in intestinal tissues of preterm piglets treated with antibiotics or control saline. Twenty-four preterm piglets were delivered by caesarean section on day 105 of gestation from two healthy sows. All piglets were initially provided with parenteral nutrition via a vascular catheter, combined with small amounts of minimal enteral nutrition. On day three, all parenteral nutrition was stopped and total enteral nutrition was given through an oro-gastric feeding tube. Piglets were allocated into controls ( n=13) and an intervention group receiving oral and systemic broad-spectrum antibiotics ( n=11). To assure high systemic and intra luminal MIC values antibiotics were given both orally and intramuscularly. All antibiotics were given directly after feeding with an oral bolus and control pigs were given corresponding amounts of saline. On day five, all piglets were euthanized, and small intestinal tissue collected.
Project description:To understand the effects of the microbiome of Drosophila melanogaster on host gene expression, we compared the transcriptome of guts from conventionally reared flies to their axenically (germ-free)-reared counterparts. Our analysis used dissected intestines from 4-7 day-old adult females and included two wild-type fly lines, OregonR and CantonS, as well as an immune-deficient line, RelishE20. With one of the wild-type lines, CantonS, we also looked at the impact of microbiome on the transcriptional profile of dissected intestines from aged cohorts (35-40 day-old females) and young (4-7 day-old) non-gut tissues (all tissues remaining from samples dissected for the analysis of guts.
Project description:Necrotizing enterocolitis (NEC), a severe gut disorder in preterm infants, is difficult to predict due to poor specificity and sensitivity of clinical signs and biomarkers. Using preterm piglets as a model, we hypothesized that early development of NEC affects blood gene expression, potentially related to early systemic immune responses. In this animal model, variable severity of gut NEC lesions were detected in 5d-old piglets with limited clinical signs. NEC (n=20) and control piglets (CON, n=19) were analyzed for whole blood transcriptome, revealing 344 differentially expressed genes (DEGs) between NEC and CON piglets. Co-expression network analyses and qPCR suggested AOAH, FKBP5, PAK2 as three NEC-specific genes associated with severe gut lesions. These results suggest that whole blood gene expressions are affected in preterm piglets when clinical symptoms of NEC are minimal. Blood transcriptome may be a novel tool to identify early biomarkers of NEC.