Project description:Drought is a stressor for many soil-inhabiting organisms. Although plants have been extensively investigated for drought-adaptive mechanisms, little information is available for fungi. Antioxidants are especially relevant, since desiccation is accompanied by an excessive intracellular production of reactive oxygen species. Riboflavin (vitamin B2) is one antioxidant regulating drought tolerance in plants. A similar function may exist in fungi. Here, we examined the respiratory and transcriptional responses of Agaricus bisporus to drought and the impact of riboflavin. Mesocosm experiments with four groups were established: hyphae were treated with or without 50 µM riboflavin under drought or no drought conditions. Drought increased riboflavin content in hyphae about 5 times with, but also without, addition of riboflavin. Without addition of riboflavin, fungal respiration decreased by more than 50% at water potentials of about -20 MPa. With addition of riboflavin, respiration remained about 2-3 times higher. The transcriptional responses to only drought or only riboflavin strongly overlapped and were mainly based on factors regulating transcription and translation. This was even stronger in combined treatments. Riboflavin induced protective mechanisms in drought-stressed hyphae. Most pronounced was the methylglyoxal (cytotoxic by-product of glycolysis) detoxifying of lactoylglutathione lyase. Thus, our data suggest a stress-priming function and a role of riboflavin in drought responses of A. bisporus.
Project description:We report here the RNAseq data generated from a drought experiment using tomato leaves (Solanum lycopersicum), in which three timepoints and two treatments were collected. More specifically, RNAseq was generated from tomato plants prior to drought (T0), during a period of drought (T1) and after a period of recovery from drought (T2). At timepoints 1 and 2 (T1 & T2), a control set of plants that were continuously watered are also included. Furthermore, at each timepoint, each leaf was dissected into two parts, including the vein and intervein. The samples are therefore named as Tissue/Timepoint/Treatment, and include VT0W (vein, T0, watered), VT1W (vein, T1, watered), VT1D (vein, T1, drought), VT2D, VT2W and IVT0W (intervein, T0, Watered), IVT1D, IVT1W, IVT2D, IVT2W. Note that VT2D and IVT2D, while named "drought", were actually recovered from drought.
Project description:A phylogenetic microarray targeting 66 families described in the human gut microbiota has been developped aud used to monitor the gut microbiota's structure and diversity. The microarray format provided by Agilent and used in this study is 8x15K. A study with a total of 4 chips was realized. Arrays 1 and 2: Hybridization with 100ng of labelled 16S rRNA gene amplicons from a mock community sample and 250ng of labelled 16S rRNA gene amplicons from 1 faecal sample. Each Agilent-030618 array probe (4441) was synthetized in three replicates. Arrays 3 and 4: Hybridization with 250ng of labelled 16S rRNA gene amplicons from 2 faecal samples. Each Agilent-40558 array probe (4441) was synthetized in three replicates.
Project description:OsNAC6 is a stress responsive NAC transcription factor in rice known as a regulator for the transcriptional networks of the drought tolerance mechanisms. However, little is known about the associated molecular mechanisms for drought tolerance. Here, we identified OsNAC6-mediated root structural adaptation such as increased root number and root diameter that was sufficient to confer drought tolerance. Multiyear (5 years) drought field tests clearly demonstrated that OsNAC6 overexpression in roots produced higher grain yield under drought conditions. Genome-wide analyses revealed that OsNAC6 directly up-regulated 13 genes. Taken together, OsNAC6 is a valuable candidate for genetic engineering of drought-tolerant high-yielding crops.
Project description:In order to understand the mechanisms of Drought induced susceptibility (DIS) we’ve conducted a dual RNAseq experiment on rice infected tissues by Magnaporthe oryzae. At 4 days post inoculation tissues have been collected on mock inoculated and M. oryzae inoculated plants. Rice were conducted under two type of water regime: DIS Drought during three days before inoculation, NoDIS no drought before inoculation. RNAseq was conducted both on rice and fungal RNA.