Project description:Our group has developed an extra-uterine environment for newborn development (EXTEND) using an ovine model, that aims to mimic the womb to improve short and long-term health outcomes associated with prematurity. This study’s objective was to determine the histologic and transcriptomic consequences of EXTEND on the brain. Histology and RNA-sequencing was conducted on brain tissue from three cohorts of lambs: control pre-term (106-107 days), control late pre-term (127 days), and experimental lambs who were born pre-term and supported on EXTEND until late pre-term age (125-128 days). Bioinformatic analysis determined differential gene expression among the three cohorts and across four different brain tissue sections: basal ganglia, cerebellum, hippocampus, and motor cortex. There were no clinically relevant histological differences between the control late pre-term and EXTEND ovine brain tissues. RNA-sequencing demonstrated that there was greater differential gene expression between the control pre-term lambs and EXTEND lambs than between the control late pre-term lambs and EXTEND lambs. Our study demonstrates that the use of EXTEND to support pre-term lambs until they reach late pre-term gestational age results in brain tissue gene expression that more closely resembles that of the lambs who reached late pre-term gestation within their maternal sheep’s womb than that of the lambs who were born prematurely.
Project description:Feeding animals with either concentrates or alfalfa grazing has been proven to reduce the oxidative process that occurs in meat products. Indoor-kept lambs were fed a standard concentrate (n=7, C) before slaughtering all animals at 22–24 kg of live weight. Simultaneously, 7 unweaned lambs grazed in alfalfa paddocks (ALF) with their dams. Global transcriptomic data of liver with the Affymetrix® Ovine Gene 1.1 microarray was used. When ALF group was compared with C group, were identified 96 genes differentially expressed. Among these genes 92 were down- regulated and 4 were up- regulated. The clusters corresponding to gene expression profiles from treatments were clearly separated from each other. These differentially expressed genes were selected for a functional analysis by using DAVID. Three major gene clusters associated with “sterol biosynthesis (EBP, MVD, HMGCR, CYP51A1, HMGCS1, NR0B2, C14ORF1, FDFT1, SQLE, DHCR7, SC5DL, DHCR24, NSDHL) , “lipid biosynthetic process (ACACA, CYP51A1, FADS1, FADS2, SCD y SC5DL)”, “cholesterol metabolic process (EBP, MVD, HMGCR, CYP51A1, SQLE, DHCR7, HMGCS1, NR0B2, DHCR24, FDFT1, NSDHL)” were found.
Project description:The period of development from the last two weeks of gestation through the first two weeks of life spans a period of great functional and metabolic challenge to the fetal and neonatal lamb heart. Important changes in gene expression occur to meet these challenges. On this study, septa from sheep hearts at 130 days gestation (n=6), term (n=8, gestational lenght is around 145 days) and 14-days-old lambs (n=8) were used to model the changes in gene expression patterns during the perinatal period using Agilent 15k ovine microarrays. Weighted gene co-expression network analysis (WGCNA) determined five major patterns of co-expressed and functionally related genes during this critical period of cardiac transition. Septum samples from the heart were collected from non-treated fetuses at 130 days of gestational age (GA130d, n=6) and term (n=8); and from naturally born 14-days-old lambs (Lamb, n=8). None of the ewes suffered gestational diseases or showed signs of impending labor.
Project description:The period of development from the last two weeks of gestation through the first two weeks of life spans a period of great functional and metabolic challenge to the fetal and neonatal lamb heart. Important changes in gene expression occur to meet these challenges. On this study, septa from sheep hearts at 130 days gestation (n=6), term (n=8, gestational lenght is around 145 days) and 14-days-old lambs (n=8) were used to model the changes in gene expression patterns during the perinatal period using Agilent 15k ovine microarrays. Weighted gene co-expression network analysis (WGCNA) determined five major patterns of co-expressed and functionally related genes during this critical period of cardiac transition.
Project description:Samples of perirenal fat tissue from 8 Assaf breed suckling lambs. These animals were selected from a larger group of 17 Assaf suckling lambs for which carcass traits were measured. The 8 selected lambs were those showing the highest and the lowest values, from the larger group, for the percentage of perirenal and cavitary fat relative to the half carcass weight. Hence, considering the values for this trait, we defined the High-PF group (n = 4; average: 3.23 ± 0,.47) and the Low-PF group (n = 4; 1.65 ± 0,.16), respectively.
Project description:The ovine Callipyge mutation causes postnatal muscle hypertrophy localized to the pelvic limbs and torso, as well as body leanness. The mechanism underpinning enhanced muscle mass is unclear, as is the systemic impact of the mutation. To investigate potential systemic effects of the mutation, 1H NMR spectra of plasma taken from lambs at 8 and 12 weeks of age were measured. Multivariate statistical analysis of plasma metabolite profiles demonstrated effects of development and genotype but not gender. Plasma from Callipyge lambs at 12 weeks of age, but not 8 weeks, was characterized by a metabolic profile consistent with contributions from the affected hypertrophic fast twitch glycolytic muscle fibres. We conclude that there is an indirect systemic effect of the Callipyge mutation in skeletal muscle in the form of changes of blood metabolites, which may contribute to secondary phenotypes such as body leanness.
Project description:The ovine Callipyge mutation causes postnatal muscle hypertrophy localized to the pelvic limbs and torso, as well as body leanness. The mechanism underpinning enhanced muscle mass is unclear, as is the systemic impact of the mutation. Using muscle fibre typing immunohistochemistry we confirmed muscle specific effects and demonstrated that affected muscles had greater prevalence and hypertrophy of type 2X fast twitch glycolytic fibres and decreased representation of types 1, 2C, 2A and/or 2AX fibres. To investigate potential systemic effects of the mutation, proton NMR spectra of plasma taken from lambs at 8 and 12 weeks of age were measured. Multivariate statistical analysis of plasma metabolite profiles demonstrated effects of development and genotype but not gender. Plasma from Callipyge lambs at 12 weeks of age, but not 8 weeks, was characterized by a metabolic profile consistent with contributions from the affected hypertrophic fast twitch glycolytic muscle fibres. Microarray analysis of the perirenal adipose tissue depot did not reveal a transcriptional effect of the mutation in this tissue. We conclude that there is an indirect systemic effect of the Callipyge mutation in skeletal muscle in the form of changes of blood metabolites, which may contribute to secondary phenotypes such as body leanness. Microarrays were used for transcription profiling of kidney fat samples taken from Callipyge (n=4) and wild type (n=4) lambs at 12 weeks of age. Sheep used in this experiment were bred from a research flock of Dorset/Suffolk/Rambouillet cross-bred sheep raised at Utah State University and cared for and euthanased for sample collection in accordance with the animal ethics guidelines of Utah State University (Utah, USA). Kidney fat (KF) samples were taken from lambs at 12 weeks of age; four callipyge (CN) genotype animals and four normal (NN) genotype animals were compared.