Project description:Mass spectrometry remains an important method for analysis of modified nucleosides ubiquitously present in cellular RNAs, in particular for ribosomal and transfer RNAs that play crucial roles in mRNA translation and decoding. Furthermore, modifications have effect on the lifetimes of nucleic acids in plasma and cells and are consequently incorporated into RNA therapeutics. To provide an analytical tool for sequence characterization of modified RNAs, we developed Pytheas, an open-source software package for automated analysis of tandem MS data for RNA. This dataset contains the analysis of 14N and 15N-labeled 16S RNA from E. coli, including all the known RNA modifications (excluding pseudouridines). The analysis has been performed using three different protocols and instruments: Agilent Q-TOF, Waters Synapt G2-S, and Thermo Scientific Orbitrap Fusion Lumos.
Project description:Ribosome assembly in eukaryotes involves the activity of hundreds of assembly factors that direct the hierarchical assembly of ribosomal proteins and numerous ribosomal RNA folding steps. However, detailed insights into the function of assembly factors and ribosomal RNA folding events are lacking. To address this, we have developed ChemModSeq, a method that combines structure probing, high throughput sequencing and statistical modeling, to quantitatively measure RNA structural rearrangements during the assembly of macromolecular complexes. By applying ChemModSeq to purified 40S assembly intermediates we obtained nucleotide-resolution maps of ribosomal RNA flexibility revealing structurally distinct assembly intermediates and mechanistic insights into assembly dynamics not readily observed in cryo-electron microscopy reconstructions. We show that RNA restructuring events coincide with the release of assembly factors and predict that completion of the head domain is required before the Rio1 kinase enters the assembly pathway. Collectively, our results suggest that 40S assembly factors regulate the timely incorporation of ribosomal proteins by delaying specific folding steps in the 3M-bM-^@M-^Y major domain of the 20S pre-ribosomal RNA. Three datasets of yeast ribosomal samples subjected to different chemical modifications; 1M7 dataset contains 8 different modified samples and 2 control samples; NAI dataset contains 3 different modified samples and 2 control samples; DMS dataset contains 1 modified sample and 1 control sample. Each sample consists of at least two replicates.
Project description:RNA-seq analysis of in vitro transcribed mRNAs, containing modified nucleotides, or unmodified/canonical nucleotides, in order to assess the effect on the frequency of INDELS during transcription.
Project description:Mass spectrometry remains an important method for analysis of modified nucleosides ubiquitously present in cellular RNAs, in particular for ribosomal and transfer RNAs that play crucial roles in mRNA translation and decoding. Furthermore, modifications have effect on the lifetimes of nucleic acids in plasma and cells and are consequently incorporated into RNA therapeutics. To provide an analytical tool for sequence characterization of modified RNAs, we developed Pytheas, an open-source software package for automated analysis of tandem MS data for RNA. This dataset contains the analysis of S. cerevisiae 18S RNA, with identification of pseudouridines through a custom 2H isotopic labeling schema.
Project description:Neonatal mice were susceptible to cryptosporidium infection at 1- and 2-weeks of age, but were resistant to infection at 3- and 6-weeks of age. Diet and microbial changes are known to occur during the weaning transition in mice and we hypothesized that these changes in the intestinal luminal environment might influence resistance and susceptibility to cryptosporidium infection. As one part of testing this hypothesis, cecal microbiota composition was determined by 16S ribosomal RNA sequencing of DNA isolated from the cecal contents of mice at 1 week, 2 weeks, 3 weeks, and 6 weeks of age.
Project description:To investigate the TVA diet's effect on mouse gut microbiome, we fed C57/BL6 mice with TVA diet or CON diet for 18 days We then collected feces of the mice and performed 16S ribosomal RNA (rRNA) sequencing.
Project description:Human breast milk contains a diverse community of bacteria but factors that produce variation in the breast milk microbiome are largely unknown. We evaluated if 1) maternal factors including breastfeeding practices modified the diversity and abundance of bacterial communities in breast milk and 2) if subclinical mastitis (SCM), an asymptomatic inflammatory condition occurring during lactation, induced a distinctive microbiota signature.